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Introduction and Overview: MOSRP05

Introduction: defining and responding to pressing seismic challenges

In my view, a research program that addresses the most significant and pressing seismic challenges
requires: (1) starting with a forthright, clear and candid view of the source of those challenges;
(2) recognizing when and why current leading-edge seismic capability can fail; (3) identifying the
actual prioritized limitations/impediments; and, what are secondary issues; and (4) determining
the conceptual and practical limitations that caused other methods (that sought to respond to these
same challenges to not reach their intended goals and objectives) and (5) be prepared to explain
how your strategy recognizes and avoids the latter pitfalls.

A pressing challenge

Among the outstanding seismic exploration challenges faced by the petroleum industry is the
inability to effectively remove multiples and image and invert seismic data for potential hydrocarbon
targets at, and/or beneath, highly complex laterally and vertically heterogeneous, rapidly varying
media and/or a rapidly varying and corrugated boundary.

Primaries and multiples: their different histories, status, and challenges

When addressing the complex, ill-defined, rapidly varying and inaccessible subsurface challenge,
it is important for us to understand that the state of efficacy, and concomitant issues that need
to be addressed today, are extremely different for removing multiples than for depth imaging and
inverting primaries for target identification. Those differences arise from the very different historical
starting points, subsequent record, and rate of progress in the evolution of seismic techniques for
multiples and primaries. Primaries and multiples also involve very different degrees, ranges of issue,
and distinct types of technical challenges, especially under complex conditions. As also expected,
the priority and the form of the response to those challenges has been influenced by the history of
petroleum industry trends and exploration and production focus and portfolios, and different types
of plays.

In this Introduction to the M-OSRP 2005 Annual Report, we will overview our program, and its
goals, technical strategy, and projects; and their progress, status and plans, and describe how our
program and this report relates to each of these five (5) issues in the first paragraph. In addition, we
describe how our projects, objectives and deliverables reflect and respond to those different types of
challenges faced by processing multiples and primaries in seismic exploration. We provide, within
the Report, the schedule of documented code delivery for both M-OSRP use and distribution to
sponsors.

1



Introduction MOSRP05

The inconsistent processing of primaries and multiples: circa 1980

The removal of multiples has a long seismic history. 25-30 years ago the work-horse standard
methods were dominated in practice by algorithms based on: (1) a 1D earth model and statistical
assumptions concerning primaries and multiples; or (2) a 1D earth model and velocity determi-
nation/estimation and discrimination filters. In that same time period, the imaging of primaries
was being treated as a wave-field process, from multi-D reflectors beneath a multi-D subsurface,
requiring an accurate multi-D velocity to achieve an accurate image. In contrast, methods using
primaries for parameter estimation (e.g., AVO) and target identification from amplitude analysis
assumed a homogeneous or 1D overburden and a single horizontal reflector model.

Before 1980, there was a clean and clear separation of interests and responsibilities: multiples were
largely considered the domain and responsibility of those with an EE signal processing orientation,
imaging primaries were for people comfortable with the wave equation, and amplitude analysis
required: (1) knowledge of a linear approximate angle dependent reflection coefficient, (2) a strong
aversion to multi-D wave theory, (3) and some familiarity with rock physics results. The fact
that these three stages of processing, multiples, imaging, and amplitude analysis, were internally
completely inconsistent and contradictory viewpoints within a single processing chain, gave little
pause or concern.

Why multiple removal advanced first and fastest

The industry trend to deep water – even a horizontal deep water bottom, and a 1D subsurface
– produced an immediate shut down in the statistics based demultiple methods. That multiple
removal breakdown was exacerbated with any deviation from 1D, e.g., in the presence of a single
dip in the water bottom. Hence, the industry trend to deep water brought a rejuvenated interest
in new and more effective methods for removing multiples, first in deep water and then in 2D, 3D
and complex difficult to define velocity models and subsurface conditions. With the development
of the inverse scattering free surface removal and internal multiple attenuation methods in the
early and mid 1990s the industry was first introduced to a new and inclusive de-multiple capability
accommodating any depth of water (including deep water), and an arbitrarily complex and com-
pletely unknown subsurface. No velocity, no model type, no mapping of reflectors, no interpretive
intervention.

Meanwhile, the basic conceptual state and vision behind the industry capability for imaging and
inverting primaries today remains essentially what it was 25-30 years ago. There remains, in all
current spatially accurate imaging methods, the requirement for a detailed and accurate velocity
map to achieve that objective. The difficulty in satisfying that requirement and other challenges
to current effective imaging will be described in a later section of this overview. Hence, in the past
25-30 years, multiples were 1D and needed a 1D velocity model, and primaries were multi-D and
needed a multi-D velocity model. Today, multiples are multi-D and do not require a velocity and
primaries remain with the model of 25-30 years past. Processing multiples have moved from behind
to ahead of primaries in concept and capability.

For primaries, issues related to computational, turn around time, and limited data acquisition
challenges have received the most attention, and those issues are critically important and certainly
warrant attention. But progressing those issues alone will not result in an effective response. A

2



Introduction MOSRP05

combination of a new imaging vision and capability, combined with a matching compute vision and
progress in acquisition fidelity and availability, will be required.

25 years ago multiple removal lagged behind imaging primaries, now that is
reversed – and it is time to close the gap

Given an appropriately recorded measured surface data, and an estimate of the source signature in
water, and effective deghosting, there are field data tested inverse scattering methods for removing
free surface multiples and attenuating internal multiples, available within our program, that can
accommodate the most complex subsurface conditions, without any subsurface information, what-
soever. In contrast, given adequate and complete surface seismic measurements, and an estimate of
the source signature in water, and an effective deghosting algorithm, there is no currently available
and field data tested imaging and inversion algorithm that can reliably locate, delineate and defog
the subsalt image. Our purpose is to close that gap, and to bring to the processing of primaries
the same level of capability that has been earlier provided for multiples.

Developing new concepts and algorithms for not only attenuating (or reducing) but for eliminating
or removing internal multiples, depth imaging and inverting primaries under complex circumstances
and large target earth property changes are the programs central objectives. Advancing and sat-
isfying the necessary data acquisition and/or reconstruction requirements, and source signature,
and deghosting steps are essential prerequisities for this campaign to succeed. The individual
contributions in this report address and progress these issues.

The first term of the inverse scattering series, consistent processing of primaries
for depth imaging and AVO: 1981–1985

Inverse scattering, the inverse scattering series, and the inverse Born approximation were all first
introduced and adapted to seismic exploration, starting about 25 years ago, to provide first and
foremost a multidimensional direct inverse methodology. It was initially viewed as providing a
first framework to progress, generalize and eventually extend and then merge two separate and
previously disconnected lineages in the seismic processing of primaries: (1) imaging and (2) am-
plitude analysis. The concept of migration-inversion (M-I), or a generalized form of migration
before inversion, derives from the first linear term in the inverse scattering series. If your method is
restricted/confined to using only that single linear term; and, hence, accepting the inverse Born Ap-
proximation, you are assuming: (1) no multiples, (2) that an adequate velocity can be determined
and (3) that changes in earth material properties are small enough to satisfy a linear relationship
to a reflection coefficient. In contrast, if you use the entire Inverse-Scattering Series then none
of those three limiting assumptions are present: (1) the input data are primaries and multiples,
(2) no adequate velocity model is required as input or determined, and (3) no linear approximate
relationship between reflection data and earth property changes is assumed.

That single term linear concept emerged and was developed in the early and mid 1980s, by (among
others), Raz, Bleistein and Cohen, Clayton and Stolt, Stolt and Weglein, Coen, Gray, Foster, Hagin,
Burridge, Beylkin, Coates, Anderson, Boyse, Keys, Tarantola, Beydoun, Cao, Ikelle, Keho, R. S.
Wu, L. Huang, Miller, Oristaglio, Devaney, and Chapman and recently to 3D by S. Fomel. Those
authors contributed concepts and methods that produced maps of spatial distributions of imaged

3
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reflectors with an angle dependent point function providing a local angle dependent reflection
coefficient with respect to the normal of a reflector. That output, in turn, provided the input for
typically linear parameter estimation through a dip-recognizing and generalized AVO analysis - and
that two step Migration-Inversion became understood as the required sequence consisting of, “where
before what”. Migration-Inversion shares with all migration methods the need for an accurate
overburden velocity model. Using that single term linear approximate expression (also called the
inverse Born approximation) we can derive: (1) Migration-Inversion, (2) Migration, (3) AVO, and
(4) NMO-Stack. The demand for overburden information is higher in M-I than for migration since
the image is no longer the end product but is now the input to subsequent amplitude analysis, to
be literally and quantitatively interpreted as a reflection coefficient at depth, for subsequent linear
or non-linear AVO. The two step migration followed by inversion had the advantage of producing
a composite of parameter changes through the overburden before deciding on the model specific
detail of the reflection process.

Given that overburden knowledge assumption, the above cited methods allowed, for the first time,
a consistent multi-dimensional framework for reflector location and parameter estimation, auto-
matically arranging for the amplitude analysis to be carried out with respect to the normal of the
imaged reflector. We remind ourselves of that history both for the record; and, more importantly
for the relevance and lessons gleaned for our research program and immediate upcoming plans.

As we know and have already noted, the industry trend to deep water in the 1980s resulted in a
set of previously used demultiple methods to immediately shut down, and that combined with: (1)
increased cost in exploring and drilling in deep water, and an associated lower tolerance for dry
holes; and (2) the increased need and interest in exploring for complex and inaccessible targets,
all combined to drive the need for higher technical efficacy. Methods for removing multiples and
processing primaries were more frequently bumping up hard against their assumptions. That
confluence of technical and economic factors motivated and supported the need for fundamental
new seismic concepts and capability.

The inverse scattering series: a comprehensive theory for processing multiples
and primaries: 1990–present

Weglein, Boyse and Anderson published a paper in 1981 on the inverse scattering series for seismic
inversion. It seemed like a “formalism” and a framework, at best, at that earlier time when prestack
time migration was considered to be pushing the envelope. However by the late 1980s and faced with
the new E&P trends and challenges, it was decided to take a new look at the inverse scattering series
(as the only direct multi-D inverse method) to examine its potential beyond only using the first
linear term for Migration-Inversion, and advancing the processing of primaries and its concomitant
restrictive assumptions of no multiples and adequate background information and velocity. Perhaps
the non-linear inverse series as a whole might not make those limiting and restrictive assumptions.
However, we need to remind ourselves that the single objective of the inverse scattering series,
shared by all classic inverse methods, is to input data and then directly output the medium property
configuration of the portion of the earth’s subsurface under investigation.

The conditions that would allow for the convergence of the entire inverse scattering series in its
pristine form turned out to be a complex issue, involving a numerical testing for the determination
of convergence for the complete inverse series. The issue concerning the convergence of the entire
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inverse series was first examined and tested by P. Carvalho and reported in his thesis (1992). For
a one dimensional acoustic medium the entire series could input data with primaries and multiples
and directly output the exact subsurface as a function of depth. However, those tests concluded
that the contrast between actual and reference properties had to be less than about 11% to permit
convergence. Hence, although the formalism of constructing terms in the series didn’t require a
velocity model, convergence of the series placed conditions on how far the unknown velocity could
be from the reference. That disallowed the claim that the entire inverse scattering series did not
require a velocity model for convergence, since convergence required a proximal velocity, and the
ability to provide that level of velocity estimate was not easy in practice, and was at that earlier
time (1990) often impeded by persistant and troublesome multiples. However, it is important to
note that within its interval of convergence it was able to input all measured primary and multiply
reflected data at once, and directly output the subsurface configuration without requiring any input
velocity information, whatsoever.

As with all inverse methods that determine from seismic recorded data directly, and in one step,
earth material property changes, there are issues of model type choice sensitivity and bandwidth
that are experienced by the inverse scattering series when viewed in that single, one step, “all or
nothing at all” mode.

There is a difference between the conditions for an overall series to be convergent and when terms
in a series are useful, or when a subseries has more favorable characteristics. The harmonic series
1 + 1/2 + 1/3 + 1/4 + 1/5 + . . ., is divergent, but the geometric series 1 + 1/2 + 1/4 + 1/8 + . . . = 2,
is a subseries of the harmonic that is convergent. The WKBJ method is a useful result that derives
from the first term of a divergent series. In contra-distinction there are convergent series where no
finite number of terms produce useful results. Overall convergence of a series and the extraction of
useful information from a series are two very different and distinct issues.

Inverse scattering isolated task specific subseries: navigating and negotiating the
classic inversion impediments and producing a sequence of practical algorithms

The vision of: (1) a sequence of isolated task specific subseries, (2) model type independent sub-
series, and (3) purposeful perturbation ideas, were all new concepts brought to the inverse scattering
series. This was an essential part of a strategy determined to seek to extract useful practical al-
gorithms that would: (1) recognize and exploit all of the unique multi-dimensional direct inverse
potential of the inverse scattering series, while (2) navigating, negotiating and addressing conver-
gence, model type and bandwidth issues. The inability of earlier methods to effectively address the
latter issues had derailed those initiatives. Recognizing the real problems, and designing a technical
strategy to address those challenges that also acknowledges why earlier methods failed, has been
the guiding philosophy in our history; and remains the driving force behind our program and plan.

Did the inverse scattering series have a set of sub-activities and sub-interests contained within its
overall purpose, or was it solely driven by only a single isolated interest and objective, the classic
target identification goal shared by all inverse methods, with all input data and all terms relentlessly
and directly being treated as signal and used for and supporting that one objective? The former
sub-activities inference was an intuitive guess that is central to our strategy; and our expectation
of the existence of that set of useful subtexts has been justified to-date.
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The removal of free surface multiples were by themselves a challenging and high priority issue,
and hence, it was decided that the inverse scattering series would be examined to see if that event
removal was something it might be interested in accomplishing; and, if so, then could that activity be
isolated from other interests the inverse series was simultaneously pursuing. The idea was, perhaps
those isolated interests would allow more favorable convergence and less stringent data completeness
requirements, such as bandwidth, and perhaps would even automatically accommodate with a single
unchanged algorithm a broad set of earth models. Those supposed interests of the inverse series
might include: (1) removing free surface multiples; (2) removing internal multiples; (3) imaging
primaries in space; and (4) the estimation of earth material property changes across those imaged
reflectors.

The location of those isolated interests or tasks within the inverse scattering series is not trivial. In
particular, in separating the latter three from each other can be quite daunting. There are forward
series analogs that give strong suggestions for the symmetric inverse tasks. Providing diagrammatic
interpretations of terms for creating and processing primaries and multiples has always played a
major role in our history and current activity and plan. Several papers in this report by Innanen,
and Ramı́rez and Otnes address and provide different important forward series insights. There are
numerous papers that discuss forward and inverse processes on acoustic media. The history and
contributors to these developments were reviewed in the Inverse Problems Topical Review in 2003,
and several subsequent papers.

Order of tasks, bandwidth, model-type and the purposeful perturbation property

The inverse series does not perform its 4 tasks (as above) in this order, or in isolation, but actually
performs them all at the same time as well as it can given the means at its disposal in any given
order of term in the inverse series. However, there are terms that seem to be performing these tasks
in combination, and other terms (or portions of terms) that seem to operate as though that task
was the one and only task that ever needed to be performed. The latter isolated task contributions
form the isolated task specific subseries. Why these tasks and that specific order of tasks? There
are several good reasons, both historical and practical in nature. Free surface demultiple was first
because when it is a problem, as for instance with a hard water bottom, it is the dominant problem
and can swamp all other problems, with an R2 compared to the internal multiple R3. However, in
deep water, and subsalt plays and onshore projects, internal multiples can and do dominate and
can cause havoc.

In the presence of free surface and internal multiples, free surface multiples need to come out
first, to satisfy internal demultiple algorithm assumptions. Bandwidth requirements are a critical
factor as is algorithmic simplicity in deciding the order of tasks. The order of tasks: (1) free
surface multiple removal; (2) internal multiple attenuation; (3) depth imaging primaries; and (4)
estimating earth property changes across imaged reflectors, represent in that order a progression
of less to more demand on bandwidth, and in particular the low end of the spectrum. The fourth
task, estimating earth property changes, is the traditional inverse objective and its requirements
are the most demanding. Solving these tasks in the indicated order reduces the difficulty and
complexity of the next task isolated step, and the latter uses the previous accomplishment as a
form of a-priori information to help keep its isolated focus. Accomplishing task 3, spatial reflector
location, prior to task 4, parameter estimation, can allow the achievement of task 4, with extremely
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bandlimited data, that is not achievable without task 3 preceding task 4. Another major hurdle
besides bandwidth of single task inverse approaches that seek to directly go from data to identify
earth material properties is the sensitivity to model type. The first two tasks involving multiple
removal when accomplished with inverse scattering series methods are model type independent, and
the third, spatial reflector location, appears able to be cast in a model type independent formalism,
as well. Hence, three of the four tasks are less sensitive to missing bandwidth than parameter
estimation, and furthermore accomplishing task three before task four mitigates that issue. Two
of the tasks are model type independent, and the third is apparently, as well. Thus, not only are
the isolated task specific inverse scattering subseries directly addressing the issues of processing
in highly complex and inaccessible circumstances, without the need for subsurface information,
they are, in addition, navigating and negotiating and mitigating the classic bandwidth and model
type sensitivities. Another amazing benefit of the isolated task specific subseries methodology is
its property of purposeful perturbation. The very first term in an isolated task specific subseries
determines if the specific issue it is designed to address exists in your data, and it immediately
determines whether its services are needed and shuts down before it even finishes computing the
first term, if the data communicate that that problem is not in your data. For example, the
internal multiple attenuator, the first term in an elimination series first determines if there are
internal multiples, before proceeding to predicting and subtracting.

No purpose leads to no computation, and decides that quickly and produces the value zero before
the very first term internal estimate completes its operation. Similarly for the imaging series, it
first decides if there is an imaging problem, and before an integral is computed will send a message
that your current velocity and imaging are in order, if that happens to be the case. And it only
goes into action to correct a depth of a reflector after that determination is made for the need of
its services. That theme is an isolated task specific series attribute–that a decision is first made if a
task is needed, and that happens within and prior to the first linear step to address that task. That
purposeful perturbation property is frankly an unanticipated and incredible property of the isolated
task specific subseries concept and algorithms. Purposeful perturbation along with identifying the
specific delivery of each term in the subseries adds incredible practical benefit, as well as mitigating
issues of subseries convergence. When available, closed forms for an entire task specific subseries
add tremendous additional practical impact, and allow the use of water speed reference, without
concern for the cost and round-off errors incurred in computing large numbers of individual terms.

Perturbations change things from a reference value; purposeful perturbations decide if there is a
need or purpose for that perturbation, and that decision is automatic within the linear perturbation
step, before a first approximate perturbation is computed and takes place.

Inverse scattering series, iterative linear inverse, and global searching

The latter bandwidth and model type sensitivities and obstacles were among the factors contribut-
ing to the disappointment of the iterative linear and generalized inverse global full wave form “all
at once” approach pursued by Tarantola and his colleagues and students in the 1980’s.
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Inverse scattering series and DELPHI’s feedback loop

The feedback loop methods developed by Berkhout, Verschuur and Delphi colleagues and students
also represents a useful and worthwhile staged approach. However, the feedback method is not
the inverse scattering series, nor does it correspond to the task specific subseries, for any one of
the four tasks we listed above. The inverse scattering series can, in principle, not only attenuate
but also remove internal multiples; and, not only image, but depth accurate image and invert
primaries without knowing or determining the velocity model. That internal multiple removal and
spatially accurate imaging is not achievable, in principle; and, hence, is precluded without the
accurate velocity model in the Delphi feedback loop methodology. There are certain times when
an internal multiple generator can be identified that the Delphi procedure provides an efficient and
appropriate and effective choice. The Delphi group has also pioneered novel and worthwhile ways
to use multiples for data extrapolation and enhanced imaging.

At this time the dominant view is the exclusive view that multiples are considered noise and
primaries are signal; and, the use and inclusion of multiples is very much an embryonic and minority
viewpoint. We would encourage keeping an open mind on the inclusive viewpoint, and there are
certain achievements to-date. But the complexity of multiples and their propagation, make a
general theory of imaging primaries and multiples even more demanding of a primary and multiple
generating discontinuous overburden velocity model. Hence, that inclusive inmaging approach is
pointed further in exactly the wrong direction for imaging beneath complex media, where we cannot
find the primary velocity model and therefore a model for primaries and multiples is well beyond
near term reach and determination.

In our strategy the inverse scattering series treats multiples unambiguously as coherent noise, to be
removed before imaging primaries. Hence, when it comes to the most complex geology and difficult
to interpret data, and interest in attenuating or removing maximum number and types of multiples,
without any event picking, velocity or structural information or interpretive intervention–then the
inverse scattering algorithms have since 1994, and remain today, the method of choice and without
peer for efficacy and completeness. The internal multiple attenuation methods, are extended in this
Report to internal multiple removal, since attenuation can sometimes be inadequate or insufficient,
and hence a residual impediment in e.g., marine converted wave internal multiples, subsalt plays
and onshore applications.

Superscripts, subscripts, and new concepts

Although we are focused on developing new practical methods that are effectively addressing press-
ing challenges on field data, much of our early embryonic research starts with simple 1-D acoustic
models. The standard being applied here is that every new concept we pursue must be generaliz-
able to the actual complex multi-D earth. And those steps from simple to added complexity are
illustrated in this Report. However, if you cannot demonstrate how your new concept would work
in a simple 1D acoustic world with perfect analytic data, then how do you expect it to be useful in
the real world and field data. Take the simplest expression of the problem and test your concept.
If the only way you can formulate your concept is with an obscure abstract notation and a blizzard
of superscripts and subscripts, then, in my experience, it’s probably not a new idea, but an old
idea in a new fancy and obfuscating set of clothes. Different series methods have been advocated
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(other than the inverse series, e.g. Bremmer series) with reported favorable convergence properties.
However, that series requires detailed layer boundaries and velocities as input, and it is interesting,
but largely irrelevant for the removal of multiples and imaging and inverting primaries under the
pressing challenge represented by complex, ill-defined media.

Relevant rigor

The rigor we are most concerned about is the rigorous statement of the actual practical prioritized
problem being addressed, and how the proposed method actually addresses outstanding issues, and
has the potential to add value beyond current capability, and defining its place in the toolbox. New
thinking rarely begins with rigorous math; you need a framework for rigor, and fundamentally new
concepts and vision are by definition absent of a framework, and are most often intuitive in their
embryonic early stages. Rigorous derivations of solutions to the wrong problems are interesting, but
are, from our perspective, off target. Once you have developed new thinking, rigor then provides an
understanding of the limits of algorithms and where further attention and progress will be needed.
And further progress will always be needed. The relevant issue and objective is providing capability
beyond current capability, not perfection, nor exact methods, nor completeness. The latter are not
achievable, but increased effectiveness, and associated reduced risk and increased reliability are
reachable and realizable goals.

Practical pre-requisites for the isolated task specific subseries

The M-OSRP program recognizes the theoretical and practical prerequisites and assumptions re-
quired for the non-linear series to reach their potential, and takes ownership and responsibility
for new and effective methods, discussed and developed in this report, that will maximally ac-
commodate and satisfy those requirements. Among those requirements are: (1) data collected,
and/or effectively reconstructed by extrapolation and interpolation methods consistent with 2D or
3D wave theory seismic processing, (2) estimation of the source signature in water, and (3) source
and receiver deghosting.

Inside and outside the model

Whereas, our overall and dominant view is that major strides are accomplished by increasing
deterministic realistic accommodation, we recognize that all models (starting with our own) are
just that: models. Completeness of any model in the sense of matching reality is not achievable,
but progress and improved reliable prediction and reduced risk come from increased reality and
movement towards completeness. To be effective we need to recognize that gap between model
and reality, and typically that realm falls into the regime of statistics. Adaptive methods and
subtraction techniques that seek an objective function with a property that can be constructive,
are often needed, necessary and usefully applied. Those techniques are worthwhile progressing and
the report by Sam Kaplan and Kris Innanen represents a new and important advance in that arena.
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Compute vision: flexible optimal algorithms to accommodate different distributed
compute architectures

Sam Kaplan, working with Kris Innanen, and Billy Robinson (IBM), has provided an excellent
set of well-documented codes, both of his own individual contribution, (free surface and internal
demultiple algorithms) and high-grading the deliverables of other M-OSRP contributors, such as
Z. Guo (wavelet); J. Zhang (deghosting); and F. Liu (finite difference modelling). Sam’s compute
vision and deliverable allows adjustment of the codes to fit the strengths and weaknesses of a
specific compute architecture, e.g., accommodating different memory per node and speed between
node configurations. Their contribution is not only impacting our current code deliverables, through
extremely creative and innovative optimally reconfigured algorithms for critical compute time turn-
around efficiency; and, in adittion allowing codes to be adjusted for different machines, but are also
providing an invaluable platform for ongoing, and future M-OSRP algorithm development and code
delivery.

Migration and velocity

We have written several papers and a SEG reprint volume with Bill Dragoset about the problems
and challenges with removing multiples; and, hence, thought it might be worthwhile to spend a
few moments on the imaging problem.

Let’s begin with the statement of the problem. All current imaging methods require an adequate
velocity model to achieve an adequate depth image. Imaging methods include: Kirchhoff (Schnei-
der), Gaussian beam (R. Hill), finite difference (Claerbout), F-K (Stolt), phase shift (Gazdag),
post stack finite difference (Larner et al.), p-tau (Stoffa), reverse-time (Whitmore, McMechan,
Kosloff, Levin), phase-screen (R.S. Wu, L. Huang), common image gather (Rocca, Biondi, Fomel,
Sava, Symes), CFP (Berkhout, Verschuur, Alai), CRS (Gelchinsky, Hubral) and weighted sum CRS
(Keydar, Landa). Many of these references can be found in the text by Stolt and Benson (1986)
or in a recent historical review of migration by Bee Bednar (2005).

The depth imaging methods cited above can be re-arranged and represented as a spectrum of various
degrees of depth imaging effectiveness and capability. As capability increases, and wave-theoretical
completeness in depth imaging algorithms improves, there has been a concomitant greater need,
dependence and sensitivity for an accurate detailed velocity model. For instance, post-stack time,
pre-stack Kirchhoff, Gaussian beam, finite difference, and pre-stack reversed time migration, repre-
sent an evolution of both increased imaging capability and velocity demand. This increasing high
bar of velocity model need for depth imaging beneath highly complex media can rarely (if ever)
be directly satisfied in practice for the more advanced imaging techniques to reach their potential
and promise. Hence, in current industry practice a procedure is used that indirectly seeks to deter-
mine the image that a correct, accurate and detailed velocity would directly produce. The indirect
procedure seeks to satisfy a property, or invariance, (e.g., horizontal common image gather), or
optimal offset trajectory stack, associated with the image with the correct velocity. These indirect
property satisfaction approaches represent (at best) a necessary condition that a correct image
would satisfy. They are not necessary and sufficient for determining the velocity model, and this
distinction is especially significant under complex geologic circumstances. In addition, although
simple in concept, satisfying those imaging invariance criteria is often no easy matter. Also, in
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general, many velocities can satisfy the necessary invariance or other property and/or condition;
and, that set of velocities includes both the correct and a plethora of incorrect velocity models.
There is a sense that these indirect methods are too blunt an instrument for the subtleties faced in
highly complex imaging problems. Also, these indirect approaches often have ray-theoretic rather
than wave theoretic underpinnings.

For all of these reasons the above cited imaging procedures can and will produce useful or erroneous
imaging results with the correct or erroneous velocity models, respectively. And both can arise
from an indirect method that satisfies the necessary criteria for an image with the correct velocity.
Separately, it is worthwhile mentioning that there are methods seeking to produce a focused “image”
and not a more demanding “depth-accurate image”; and those lower ambition imaging methods (as
you would reasonably expect) would be less demanding of velocity information. Never-the-less, and
in summary: behind each of the cutting edge depth-imaging methods (cited above) there resides
the explicit algorithmic assumption and requirement for an adequate velocity model to produce an
accurate depth image.

For balance, it is important to mention that there is of course a large literature and innumerable
instances where current velocity analysis and imaging methods provide effective and useful results.
And those successes are of course deserving of our recognition, appreciation and gratitude. However,
our purpose here is to define and respond to pressing seismic challenges. Thus, our necessary
emphasis and focus is on the assumptions behind current capability: to understand why they can
and do sometimes fail, and through a clear view of the challenges we face to have a chance to derive
methods that either improve current methods, or totally avoid those limiting assumptions; and,
hence, have a chance to succeed when current methods fail.

There are several factors that contribute to produce seismic imaging failure. One contributor is
the inability to directly or indirectly determine an adequate velocity model under complex geologic
circumstances. Even with the exact velocity model, all current leading-edge imaging methods can
fail. One need not seek very complicated velocity models to exhibit the latter failure, e.g., a simple
homogeneous 2D acoustic model, with a single isolated homogeneous closed region above the target
will suffice. In fact given two homogeneous half spaces connected by a single complex corrugated
and diffraction generating boundary can cause imaging problems with the constant velocity given
in the upper half space. The dry hole drilling rate in subsalt, sub basalt and subkarsted plays,
and the current trend away from the technical challenges in the deep water, to onshore plays, and
other areas of the world with heightened geopolitical uncertainty replacing technical risk, all speak
to that reality.

In Figure 1, the recorded reflection primary event, e, is the composite of its subsurface experiences
between the source and the receiver, and can be described as a downward propagation, D, a
reflection, R, and an upward propagation, U :

e = DRU. (1)

When the down-going wave, D, passes through the complex highly rugous top and base salt it has
a complex effect on the character of the wave. Similarly for the upgoing wave, U , traveling upward
from the reflector through the salt to the receiver. Therefore, the recorded event, e, has a complex
character due to the complex downward and upward alterations the wave experiences in passing
through four complex salt boundaries.

11



Introduction MOSRP05

What’s the problem? The problem is our inability to adequately – directly or indirectly – model
and remove that complex salt boundary interaction and transmission influence from the recorded
event’s character. We instead remove a smoothed version of the boundary’s complex nature, and
the resulting too-simple removal of the complex down, D, and up, U , by simpler d and upward, u,
results in

e = dR′u, (2)

and the complexity that resides in the recorded event has nowhere to go but R′. Hence, the cloud
or fog in the sub-salt image. R′ is R plus all of the complexity that is the difference between U
and u, and D and d, respectively. We recognize that this is a simple cartoon of what actually
transpires, but it in fact captures the essence of the challenge. 3D issues and anisotropy are always
relevant. But the essence, the highest-priority contribution to that complex imaging challenge is
rapid heterogeneous media and rapidly changing boundaries. That failure can be illustrated and
needs to be first addressed in 2D acoustic media. In addressing real world challenges it is essential
to define the actual obstacle to effectiveness, and to study and being able to address the simplest
incarnation and realization of that actual problem. If we cannot image and invert the simplest
2D acoustic example of that prioritized issue, why study large scale 3D elastic anisotropic models?
It is, of course, important to assure that synthetic data modeling, e.g., with finite differences,
have not inadvertently through sampling and resulting averaging replaced the problem of rapid
medium and boundary variation we seek by a smooth medium that no longer represents the issue.
Practical limitations of compute time and cost on modeling projects suggest the larger the model
the more likely this smoothing. Accurately modeling and capturing that rapid change in the salt
boundary in a 2D acoustic model is a good place to start. Even though every explorationist
knows of imaging failures, it is rare to find mention or examples in the geophysical literature or
presented at conferences. A most welcome exception was a recent workshop illustrating challenges
and difficulties of subsalt imaging held in 2005 at CSM.

Responding to the imaging challenge

To address that seismic imaging challenge requires either: (1) a major new and improved and
reliable velocity analysis method, and concomitant imaging algorithms; or (2) a fundamental new
method to directly provide depth accurate imaging without knowing or determining the adequate
velocity.

The inverse scattering task specific sub-series for depth imaging is a response in the second category.
It satisfies each of the four criteria listed in the first paragraph of the Introduction. Inverse scattering
theory is a form of perturbation theory; and, it relates differences in a medium and a perturbation
of that medium, to the differences between the original medium’s (reference) wavefield and the
perturbed medium’s wavefield. For our purposes the reference medium is chosen and the perturbed
medium corresponds to the actual earth property configuration.

It is therefore reasonable in discussing scattering theory to begin by defining a reference medium,
actual medium, reference wavefield (Green’s function), actual wavefield as, L0, L, G0, G, respec-
tively, and the equations they satisfy:

LG = δ, L0G0 = δ (3)
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and
G−G0 = φs, L0 − L = V. (4)

The inverse objective is to determine V from measurements of (G−G0) = D. The solution for V
is in the form of a series,

V = V1 + V2 + V3 + ..., (5)

where VJ is the portion of V that is Jth order in the measured data. This expansion leads to the
inverse scattering series,

(G0V1G0)m = (G−G0)m = (Ψs)m (6)

(G0V2G0)m = (−G0V1G0V1G0)m (7)

(G0V3G0)m = (−G0V1G0V1G0V1G0 −G0V2G0V1G0−
G0V1G0V2G0)m (8)

...,

where the subscript m refers to measured values.

The inverse scattering series has several useful properties:

1. Each term VJ is solved by inverting the same operator G0.

2. All forms of non-linearity are accommodated: (i) the intrinsic, e.g., the relationship between a
reflection coefficient and the changes in earth material properties, and, (ii) the circumstantial,
non-linearities that arise in removing multiples or imaging and inverting primaries that depend
on the level of (or lack of) available or achievable overburden information. The data determine
whether the services of circumstantial non-linearity are necessary, and immediately shut down
any computation for which there is no purpose. That is the essence of purposeful perturbation,
an amazing property of isolated task specific inverse scattering subseries.

3. Distinct task specific subseries are identifiable, for removing free surface, internal multiples,
and for locating and inverting primaries.

4. All of the task specific subseries are accomplished directly in terms of the data and a reference
medium Green’s function, assumed to be inadequate, and the reference medium is never
updated or moved towards the actual.

To illustrate the common thread in this evolution: The removal of internal multiples, and the depth
imaging of primaries are each accomplished by two distinct direct algorithms, that derive from their
corresponding task specific subseries. Each algorithm depends on a different multiplicative commu-
nication between events in the data, and neither requires any subsurface information whatsoever.
Figure 2 provides a cartoon of the events that non-linearly communicate in the Mississippi Canyon
internal multiple field data example, Figure 3. Figure 4 illustrates the primary events that will
non-linearly communicate to allow the subsalt image to correctly depth image without knowing or
determining the velocity.

The reflected data that leaves the top and base salt combines with the water bottom primary, and
the target primary, to output the spatial location of the subsalt target without knowing or deter-
mining anything whatsoever above the target. This capability derives from the same comprehensive
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starting point that earlier produced free surface and internal multiple algorithms: The inverse scat-
tering series (e.g., Weglein et al., 1997; 2003). The free surface and internal multiple algorithms
never predict or determine the velocity model or the rugous top and base salt boundaries, and
neither will these inverse scattering imaging subseries results. They share the property of neither
needing nor producing the velocity model or interface boundaries to accomplish their objectives:
removing multiples and imaging primaries. The complex and rugous top and base salt primaries are
complex reflection events that directly communicate with the subsalt primary to directly locate and
invert that target. The complexity and inaccessibility of the underlying salt model and boundary
plays absolutely no role in these direct methods for multiples and primaries. A sampling of a few
key milestone contributions in the evolution and development of those inverse scattering subseries
for multiple removal and depth imaging and non-linear inversion and Q compensation methods are
provided in the references. Among those pioneering contributors are: P. Carvalho, F. Araújo, R.
Stolt, K. Matson, R. Coates, D. Foster, S. Shaw, F. Liu, H. Zhang, B. Nita, K. Innanen, R. Keys,
A.C. Ramı́rez, S. Kaplan, Z. Guo, E. Otnes, and J. Zhang.

Imaging series history and background

In our history, we have published papers, Abstracts and Topical Reviews that provide a logic or
more often a reasonableness and cogency to the fundamental new concepts and methods we are
deriving, developing, testing and applying. I thought it might be useful to provide a brief history of
the development of the imaging and inversion research campaign to provide a framework for what
has transpired, what this Report represents; and where we are going from here.

In 1998-1999 a research group at ARCO consisting of: Foster, Matson, Corrigan, Shaw and We-
glein, began examining the inverse series to locate and isolate tasks and activity associated with
primaries, i.e.,: (1) depth imaging and (2) amplitude analysis, to determine changes in earth ma-
terial properties. This was motivated by: (1) the need at ARCO for a new vision and capability
for effective depth imaging in complex geologic environments; and, (2) an understanding that the
inverse scattering series provided the potential of achieving all processing objectives without the
need or determination of actual subsurface properties, including velocity. Weglein launched this
fundamental research campaign based on his assumption and optimistic guess/expectation of the
possibility of an isolated task specific algorithm within the inverse scattering series that would
perform velocity independent accurate depth imaging activity. For Weglein this issue and objective
was viewed as a natural and more ambitious and certainly more complicated next possible stage
beyond the velocity independent multiple attenuation algorithms that he, along with: Carvalho,
Araujo, Stolt, Matson and other colleagues and students pioneered, developed and then applied;
and, that had a demonstrated significance, impact and positive record. Weglein viewed the tasks
associated with primaries as imaging and inversion, and he wanted to separate, if possible, imaging
from inversion, with the hope that the former might be less demanding– since the latter was an-
ticipated to be the ultimate, traditional and most challenging in terms of data requirements, such
as bandwidth and the anticipated need to predict (from surface data and without any subsurface
information being input or determined )absolute local amplitude subsurface information, such as,
for example, a reflection coefficient. Those are two distinct and serious and well understood issues
(along with others, like model type sensitivity) for that high level of ambition.

We started with the simplest model that would allow an imaging problem, when imaging with the
wrong velocity. We considered a 1D acoustic model with only velocity changing and two interfaces,
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and we looked at the inverse scattering series with a constant background water velocity for that
simple case. Doug Foster made a significant contribution towards task isolation by separating the
second term in the inverse series into a two term expression. One term was readily recognized as the
first non-linear step in direct non-linear inversion to determine medium properties, and the second
was thought to be the origin of moving mislocated reflectors to their correct location. Matson
and Foster led the effort to analyze and interpret the complicated third term in the inverse series,
where now with three interactions between the data, other tasks were able to start to be addressed,
including the attenuation of internal multiples.

That impression about the purpose of the two separate terms in the second term of the inverse series
came from individually examining each of the two terms, the amplitude term was local and had a
self interaction interpretation associated with amplitude, that would be needed at all interfaces to
turn a reflection coefficient into a change in earth properties, starting with the first reflector. The
second term had an integral that was new and only began in the second term and was interpreted
as an interaction between separated events, and the integral was an indication that that term cared
about duration of velocity error, and, hence it was postulated as being associated with the first
contribution to correcting a mis-located interface. The latter reflector depth correction task first
arises with a constant reference medium and a two interface model, and the second term in the
inverse series has the wherewithal to begin to address that problem, through its ability to have two
interactions of the data and the data, one where the event communicates to itself and other events
without an integral, and the other where it communicates to another event through an integral.
Amplitude issues including transmission coefficient error, are spatially local issues whereas depth
correction cares about duration of the mistaken velocity, and requires an integral.

However, (when the analytic data for the simplest normal incident wave on a two interface acoustic
model was inserted into the integral term in the second term in the inverse series) the latter
interpretation and speculation was very hard to argue, explain or justify, let alone convince anyone
as valid, since the term containing the integral predicted a contribution only at the wrong mislocated
depth, and was in fact only non-zero at that incorrect depth. So how could that term with the
integral correct the image when added to the incorrect image and move the incorrect image to
where it belongs, since the incorrect image and the first correction were at precisely the same
wrong location. There was genuine confusion and consternation within the ARCO group and some
were pessimistic on the prospects of inverse series velocity independent imaging capability.

Weglein then recognized that the move from incorrect to correct would not occur in a single term
shift, but rather in terms of a series, and in fact a cascaded series when the shift was expressed
in terms of measured reflection data. The location only operation from incorrect to correct depth
was viewed as a Taylor series of the difference between two Heaviside functions, expanded about
the mislocated depth and as powers in the difference between actual and mislocated depth. Each
successive term in this 1D depth imaging Taylor series contains one higher power of actual minus
mislocated depth, and actual depth minus mislocated depth is in turn expressible as a Taylor series
in reflection data. Taking a part of the shift or imaging series, by keeping only one leading linear
term in the expansion of actual depth minus mislocated depth in terms of reflection data, then
leads to an approximate imaging series in the data called the leading order imaging series. These
are all simple 1D normal incidence only concepts, of mislocated reflectors being a shift from the
correct reflector, and although we recognized that 2D and 3 D would be a much more complicated
issue to define and address, it never-the-less provided a useful primitive launch into the imaging
problem in its simplest incarnation. And, therefore, a reasonable place to start.
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Higher order imaging series would take more than one leading term of actual minus mislocated
depth expanded in terms of reflection data. Those early ideas, concepts and tests were published in
several papers and Abstracts in 2000, 2001, 2003, 2004. Simon Shaw then discovered, developed and
tested an algorithm representing a pattern of leading order contributions to the imaging capability
within the inverse scattering series, for a normal incident wave on a 1D acoustic medium. That
leading order imaging series was derived into a compact and closed form by Robert Keys. Simon
Shaw then derived the non-trivial generalization of that imaging series for prestack data, and
derived a closed form expression, as well. Simon demonstrated the ability of the imaging series
to retain effectiveness absent zero frequency data; and, showed flat common image gathers at the
correct depth without knowing or determining the velocity model(2004).

The leading order imaging series, is just that, leading order; and, as anticipated given ever larger
contrast models and longer duration of velocity away from the reference value, they eventually went
beyond the ability of that first order approximate imaging algorithm.

Several simultaneous further single steps beyond the leading order 1D prestack imaging method
were launched from that pioneering and encouraging 1D leading order acoustic velocity only imaging
contribution of Shaw, Keys et al. After each isolated issue is progressed and understood then a
combination is collected within one or several algorithms to form a strategy towards field data
application. Among the simultaneous steps taken were: (1) to remain in a 1D acoustic velocity
only model but to go to higher order terms, (Shaw, Innanen, Nita et al.) (2) to stay in the
same 1D acoustic model and capturing a leading order series of coupled location and amplitude
tasks (Nita , Innanen et al.) , (3) to go to the much more complicated and challenging multi-
parameter acoustic and elastic worlds, in prestack 1D, with linear and non-linear contributions
for isolating location correction tasks from improved amplitude for target identification tasks (H.
Zhang et al.); (4) to take the serious leap from 1D to 2D, starting with an acoustic velocity only
medium, and identifying location and amplitude terms in that more complicated and relevant world
(F. Liu et al.); (5) one more step in realism is taking the step to the 1d inelastic acoustic earth,
where the tasks are, interface location and improved resolution without knowing or determining the
velocity or Q model (K.Innanen et al.). Several related and significant contributions advanced these
objectives, often with use of forward series analysis, analogs and insights that help steer the search
and understanding of the mirror inverse series processes. Among the latter contributions are; (1)
B. Nita et al. on prestack forward series, and asymptotic assumptions, postcritical reflections and
head waves; (2) A. C. Ramı́rez et al. , new internal multiple removal concepts and algorithm, (3)
A. C. Ramı́rez and E.Otnes, velocity and density forward series, diagramatic interpretation, and
inverse implications; and (4) K. Innanen, forward series that include diffractions, for modeling and
inverse implications.

Non-linear direct target identification: a new significant step forward

AVO has largely been a static model over the past 20 years, in terms of how earth elastic property
and density changes are considered to be related to a plane wave reflection coefficient. It is often
considered a tech service rather a research area in oil companies, and for good reason, since not
very much new has been happening on the theory front to justify calling it a research activity.
Two approaches today are: (1) the linear approximate form, or (2) the indirect model matching,
of a plane wave Zoeppritz reflection coefficient form and with global search engines. The former
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has serious issues since it is rare for petroleum targets to satisfy small contrast assumptions, and
the latter is computationally taxing and sometimes has reported erroneous or ambiguous results.
The global search methods often learn more about the properties of search engines than underlying
physics, and are difficult to imagine generalizing to a pinch out trap, or a multi-D corrugated or set
of dipping reflectors, or the fingering fluid interfaces in time lapse application. Progress has been
reported relating elastic property and density changes and rock and fluid properties, in different
exploration target settings, through a combination of empirical and theoretical studies. Progress
is also worth noting in upscaling and mapping subresolution properties and reflections into an
effective seismic response and signature.

The inverse scattering series provides a framework for direct multi-dimensional inversion, and tasks
associated with that objective, without the traditional need for subsurface information. The inverse
scattering series can be formulated for a 2D or 3D acoustic or elastic heterogeneous subsurface.
Among those contributing to that effort and elastic multi-D framework are: Clayton and Stolt,
Stolt and Weglein, and Matson et al., in 2D; and, Stolt recently extended those earlier elastic
results to 3D. Stolt and co-workers were mainly focused on linear elastic formulations, and Matson
et al. were interested in multiple removal for ocean bottom or on-shore application.

The first step into exploring the direct multi-parameter non-linear estimation of acoustic or elas-
tic properties from the comprehensive multi-dimensional inverse scattering series framework, was
initiated by H. Zhang et al. around 2002.

In my view Haiyan Zhang’s breakthrough, impressive and significant research results on direct
non-linear parameter estimation, represents a milestone and will energize and rejuvenate this field,
and allow e.g., distinctions to be made by non-linear accurate elastic property estimates that are
too close for linear estimates to reliably resolve. Analysis and examples are provided in this report
addressing time lapse application where the issue is to distinguish pressure from fluid changes. The
latter analysis and application was under the mentoring and guidance of Bob Keys, Doug Foster
and Simon Shaw of ConocoPhillips. This effort is direct, and provides a first time framework for
what data is required to consistently perform non-linear estimation, and what value can be derived
from a compromised p-wave only acquisition. Future research will examine multi-D generalizations.
Since this is task 4, parameter estimation activity, we anticipate this as a development tool at first
pass, reflecting its need for input reflection coefficient information at the target. Inverse scattering
series theory suggests that this non-linear direct parameter inversion ought to be achievable directly
from surface reflection data.

We will examine the practical data requirements needed to match and achieve the latter theory
promise, and, also determine wether first achieving depth imaging location can reduce bandwidth
demand. However, the latter is not our next step; rather, we will first seek to apply this new and
promising and efficient improved target predicting tool in a development setting.

Higher order imaging series and steps into 2D: towards accommodating greater
realism

Following some early higher order imaging results and tests by Simon Shaw, Kris Innanen progressed
and presented the higher order imaging and inversion capability within the 1D inverse series and
tested his derived form with positive and encouraging results. Simultaneously and independently,
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Fang Liu was pioneering the much more complicated, challenging and daunting inverse series for a
laterally and vertically varying 2D earth. There are issues and challenges that have no 1D analog,
e.g., misshapen and mislocated reflectors, diffractions, corrugated boundaries, pinchouts, cusps,
rapid lateral velocity variation, near vertical salt flanks, and each has inverse series activity to
respond, and that response is neither called upon nor needed in a 1D earth. Moving from 1D to
2D involves more than replacing z by x, z in 1D formulas. There are certain issues and terms in a
multi-D inverse series imaging capability that have 1D analogs and other also critical factors that
do not; and thelatter exist exclusively in a multi-D world. And both are critical to understand
and utilize for practical impact and efficacy. Fang Liu’s results and closed form relates to multi-D
imaging terms with 1D analogs. Up-Down shift occurs in 1D and a laterally varying up-down
shift occurs in 2D, and is the generalization of a 1-D capability. Fang also recognizes a term with
no 1-D analog, and notes its interest in removing salt flank diffractions in his salt model, and
helping image the dipping layer in his earlier 2D layer examples. We anticipate that many of the
current prioritized pressing imaging challenges will require and benefit from 1D generalized and
2D exclusive imaging terms. That further capture of exclusive 2D activity is part of our current
activity and plan.

Hence, imaging has many more issues and challenges to address in 2D. Fang Liu first developed a
multi-D extension of the leading order 1D imaging series capability of Simon Shaw. Fang produced
his first imaging without the velocity results on 2D models of moderate but serious and respectable
difference between actual and reference velocity. Fang Liu’s 2D imaging without the velocity drew
significant positive industry interest and attention. However as expected his partial 2D leading
order algorithm results on larger contrast models noticed a breakdown prompted by the large
contrast models mislocated images communicating with images at larger times, or pseudo depths.
Fang was aware of Innanen’s 1D higher order result, but separately intuited a different closed form
that allowed 2D higher order imaging contributions, by precluding communication with deeper
events, and keeping the amplitude of the image unchanged. Fang’s new formula was able to go
much beyond the early smaller contrast models, that were accommodated by his leading order
form, with 2D examples that included a salt model designed by Peter Traynin of ExxonMobil.
There was a need to understand how Fan Liu’s 2D higher order imaging formula could be derived
from the inverse series. Fang Liu, in discussion with Jingfeng Zhang and Kris Innanen, was able to
derive his 2D formula based on generalizing the 1D higher order analysis of Innanen, and setting a
Jacobian to one that represented keeping the amplitude of the image unchanged. Jingfeng provided
an insightful analysis to formalize and comprehend Fang Liu’s original intuitive leap. Jingfeng’s
analysis is included in this report. This interconnected and highly interactive trajectory is often
the path to new algorithms and deeper understanding.

Fang Liu et al. have taken us into the multi-D imaging world. His results are impressive and
encouraging. The next steps are to include more taxing multi-D phenomena in model tests and
capturing new and more multi-D comprehensive and inclusive imaging algorithms derived from the
inverse series. Fang’s imaging formula is derivable by extending an argument which is based upon
and originating in 1D. However, his term:

−1

2

∂α1(x, z)

∂x

z∫

−∞
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u∫

−∞

∂α1(x, v)
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is a fully 2D phenomena and has no 1D analog and cannot be derived from generalizing 1D deriva-
tions. That term is addressing among other 2D exclusive issues the diffractions off the salt flank,
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and other lateral issues in his earlier dipping layer models. More terms without 1D analogs are
needed to address the rapid varying boundaries, diffractions and lateral rapid velocity variations.
Issues of imaging a reflector that is undulating, with a simple constant velocity above, is needing
some constructive attention, as well.

Can the inverse series address the imaging challenge with a known constant overburden velocity
but a complex rapidly varying boundary? Last but not least, what are the steps needed from where
we are to where we need to be, to initiate the first imaging series algorithm field data test? What
hierarchy of challenges should we define in this set of field data tests? We will discuss and address
these matters in our last presentation, at our meeting, providing a summary overview and describing
plans. These inverse scattering task separated subseries techniques are especially well-suited, and
demonstrate their mettle in complex media: and, hence, represent a direct response to the pressing
seismic processing challenge. The current effort is to bring the same level of effectiveness to seismic
signal and information extraction from primaries, as was earlier provided to the removal of multiples.
The inverse scattering series methods hold a place in the seismic toolbox reserved for processing
data under the most complex and ill-defined subsurface conditions. The practical prerequisites
and preprocessing steps are the same for the imaging series as for the multiple algorithms: e.g.,
adequate surface data, collected or extrapolated/interpolated, deghosting, and wavelet estimation.

L. Amundsen and his colleagues have recently published several papers with new important insights
and perspectives. They recognize several forms derived by our earlier imaging series analysis as
having a WKBJ-like phase character and they are able to produce those original imaging series 1D
results without resorting to a series. That contribution provides an important insight and awareness
that perhaps implicit assumptions equivalent to WKBJ are within our diagrammatic separation
and selection of tasks in the imaging task separated series in 1D.

As we move forward into addressing further complicated multi-D imaging challenges, understanding
1D assumptions and insights within our current algorithmic state is essential in progressing ahead
and beyond the known and into unchartered fully complex multi-dimensional imaging territory.
The salt model synthetic results this year of Fang Liu et al., under the mentorship of Peter Traynin
of ExxonMobil, are extremely encouraging, and would be considered positive with a traditional
migration and an estimated velocity, and Fang Liu uses only water speed. Those results galvanize
and energize us to capture further imaging capability within the series, and test ever more realistic
models of imaging challenges.

Link to compute and acquisition

The mandate of M-OSRP is to provide fundamental new concepts and algorithms that address
the pressing seismic challenges. Codes are generated for use by M-OSRP students and faculty,
and then distributed to our sponsors. Although compute issues are not our central responsibility,
a detached attitude to the compute challenges that our algorithms can represent would be both
inappropriate and counter-indicated. Our algorithms need to be computable to be useful and
relevant. When a 3-D free surface algorithm can take a major oil company six months to run,
and the internal demultiple is well beyond that, then, simply delivering code is not sufficient to be
taking responsibility to assure high impact. Sam Kaplan had led an effort to design the inverse
scattering free surface and internal multiple algorithms to be both compute optimal and adaptable
to different distributed compute architectures. He has been working closely with Billy Robinson of
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IBM and Kris Innanen. IBM is loaning Cell processors to M-OSRP, for its use and the use by its
sponsors. IBM is interested in feedback to help design the optimal seismic processing architecture.
We would like to suggest that an M-OSRP Advisory Board Compute Sub-committee be formed to
link to that issue.

Another related aspect of the M-OSRP program is the state and progress of seismic (and other) ac-
quisition, and how that interfaces with, couples and leverages new M-OSRP processing algorithms.
An M-OSRP Advisory Board Acquisition Sub-Committee could facilitate that communication,
and perhaps help in arranging a research field experiment that could have specifications and an
exploration target that could benefit from new M-OSRP processing capability.

Imaging plan

We recognize that the imaging problem is much more complicated than the multiple removal
problem, and the latter was no walk in the park. Multiples need to be predicted and subtracted.
In contrast, there are various tiers, or hierarchies, of complexity of issues in an imaging problem.
Moving a clear but miss-located image to the right spatial location is one thing, and no easy task,
but taking a subsalt fog into a clear and correctly located image is another thing entirely.

Our plan for the imaging project is to catalog a set of currently outstanding imaging challenges in
terms of degree of complexity, and then move to field data with an algorithm anticipated to address
that first level of challenge, learn about field data application for the imaging series concept, and
then return to meet the next more demanding and difficult level and challenge. That set of learning
curve steps was how 10-15 years ago we moved to field data application in our earlier work on free
surface removal and internal multiple attenuation. Examples are presented in this Report that
exemplify these demultiple and imaging algorithms, and their evolution; and, their prerequisites
and open issues and plans are presented. This report describes the progress on all of the projects
that connect to form the strategy we have described.

A list of topics and lead author contributors, 2005 software delivery and M-OSRP presenters at
our Annual Meeting is below:

• Data reconstruction, A. C. Ramı́rez et al.

• Wavelet estimation, Z. Guo et al.

• Deghosting, J. Zhang et al.

• Free Surface Multiple Removal and field data test, 2D and towards 3D, S. Kaplan, K. A.
Innanen et al.

• Internal Multiple Attenuation, 2D S. Kaplan (Coding/Adapting internal multiple algorithms
for different distributed compute architectures)

• Internal Multiple Elimination 2D, A. C. Ramı́rez et al.

• ICA Adaptive Subtraction, S. Kaplan and K. Innanen

• Forward series for velocity and density: implications for the imaging problem, A. C. Ramı́rez
and E. Otnes
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• Forward series for 3D perturbations and series approximation of diffractions, K. Innanen

• Imaging conditions, B. Nita

• Inverse processing for Q compensation without knowing or determining Q, Innanen et al.

• Depth imaging without the velocity in multi-D, F Liu et al.

• Progressing imaging concepts and algorithms, F. Liu, J. Zhang, K. Innanen

• Acoustic Modeling, F. Lui, J. Zhang

• Non-linear direct AVO for acoustic and elastic media, H. Zhang et al.

• Non-liner direct AVO for time lapse application, distinguishing fluid from pressure change,
H. Zhang et al.

• Overview and plan, A. Weglein

Summary

So in summary, the big picture is: (1) improve the removal of multiples, (2) better locate your
target, (3) improve the target identification; and (4) the resolution of the target, and all without the
traditional requirement of subsurface information typically required to achieve those objectives. To
make it all work requires advancing one single set of prerequsities: data collection/reconstruction,
wavelet estimation and deghosting.

The idea is to provide a consistent seismic processing chain, not for academic and/or mathematical
rigor, but for effectiveness. To allow methods that depend on earlier steps and prerequisites, and to
be assured that the satisfaction of those prerequisites is as complete and effective as the methods
they are meant to serve. That consistency will best assure that the end product deliverables in the
processing chain, can reach their practical potential as a response to the pressing challenges, and
their place in the seismic toolbox.

This is an exciting time, progressing and going after the subsalt image. This is very much a team
effort and the success of each link in the processing chain determines the success of subsequent
steps. We appreciate the support, encouragement, opportunity and privilege to work together to
pursue an effective and high impact response to our pressing seismic challenges.

Sincerely,
Art

Arthur B. Weglein
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Abstract

We present a method that predicts water bottom primaries at near offsets. The concepts of
limited aperture migration and inverse scattering are combined to develop a data driven theory
for data reconstruction. Data extrapolation can be particularly challenging in shallow water,
where early events of the recorded wavefield are mainly in the postcritical regime. For this kind
of data, our results predict water bottom primaries with the correct travel time. When most
of the data are precritical, the method accurately predicts primaries and multiples without the
need for modeling or inverting for earth properties.

1 Introduction

The inverse scattering subseries formalism has acomplished the most comprehensive and accom-
modating methods to eliminate all multiples, withdrawing knowledge from the subsurface, but
placing stringent requirements on wavelet estimation, deghosting and completeness of data collec-
tion and/or reconstruction. Near offset prediction, in particular, has represented a challenge for
full wavefield seismic processing (e.g. demultiple, depth imaging).

Most of the current extrapolation methods are model type dependent and require a correct esti-
mation of earth properties; or they are based on primary-processing techniques e.g. DMO (Hale,
1984), AMO (Baumstein, 2004). These methods only work accurately for primaries, and they are
not designed to deal with postcritical data which are present in shallow water acquisitions. While
these methods (within their own assumptions and resulting quality and properties of output) have
been useful in addressing near-offset data extrapolation, they are not suited to provide a complete
prerequisite satisfaction consistent with the demands of the later steps in data processing they are
meant to serve. The potential of those full wavefield seismic processing tools are not close to being
realized in practice with the existent extrapolation capability.

We use the aperture compensated migration/inversion method (Stolt and Benson, 1986; Wang,
1990) and concepts derived from inverse scattering to develop a data-driven theory for near-offset
reconstruction. The prestack reflection data are imaged using a constant background velocity.
This image is used as a model to generate the events that were not recorded. When the data are
precritical, the method predicts primaries and multiples at near offsets with high accuracy. When
the experiment contains mainly postcritical data, the method predicts water bottom primaries at
the correct arrival time and other events are predicted with less accuracy.

∗This work was done while working as a student intern at Statoil Research Center, Summer 2005.
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2 Methodology

Data extrapolation is usually the first preprocessing step performed. Hence, the chosen extrap-
olation method must predict data with the events and characteristics of the recorded data. A
method like this can be accomplished by combining the definitions and concepts for finite aperture
migration introduced by Stolt and Benson (1986) and the concepts of inverse scattering introduced
by Weglein et al. (1981).

The inverse scattering series processing methods can accommodate a complex multi-dimensional
earth, without requiring any subsurface information. They only require measured reflection data,
D, and the reference medium Green’s function, G0. We define the perturbation, V , as the difference
between the reference and actual medium. The scattered field is the difference between the Green’s
functions in the actual and reference media, Ψs = G − G0. We expand V in orders of measured
data V =

∑∞
i=1 Vi, where Vi is ith order in the measured data. This expansion leads to the inverse

scattering equations,

(G0V1G0)m = (G−G0)m = (Ψs)m (1)

(G0V2G0)m = (−G0V1G0V1G0)m (2)

(G0V3G0)m = (−G0V1G0V1G0V1G0 −G0V2G0V1G0−
G0V1G0V2G0)m (3)

...,

where the subscript m refers to measured values, D = A · (Ψs)m and A is the source signature. The
first inverse equation, (1), resembles the form of the Born approximation, Ψs ≈ G0V G0. Although
they might look similar, they are in fact different. The first inverse equation is an exact equation for
V1 with the potential to work as an extrapolator of data. The main difference between equation (1)
and the Born approximation is the substitution of V1 in the first case and V in the second. The
Born approximation, as its name states, is not exact and it cannot be used to accurately extrapolate
data.

In equation (1), V1 is the portion of V that is linear in the data. Its value is never assumed to be
close to V , the real perturbation. Being linear in the data means that it is a direct data mapping
that treats both, primaries and multiples, on equal footing.

Our method begins with equation (1) and solves for V1 from D, with a compensation for the
finite aperture of the prestack recorded data. We solve V1 for a given earth model type, e.g.,
acoustic, elastic or anelastic. The details of the data extrapolation method depend on the choice
of parameters describing the model type. However, this choice does not require the correct model
parameters, since the goal of extrapolation is to predict events that were not measured not to invert
for the medium properties.

A 2-D constant density, variable velocity and acoustic model with free surface at z = 0 is defined
by the wave equation

(∇2 − 1

v(x, z)2
∂2

∂t2
)G(x, z|xs, zs; t) = −δ(t− ts)δ(x− xs)

×[δ(z−zs)− δ(z + zs)], G = 0 for t < ts; (4)
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where v(x, z) is actual velocity, and the subscript s refers to source position and time. The back-
ground model with free surface at z = 0 is defined as

(∇2 − 1

c0

∂2

∂t2
)G0(x, z|xs, zs; t) = −δ(t− ts)δ(x− xs)

×[δ(z − zs)− δ(z + zs)], G0 = 0 for t < ts; (5)

where c0 is the constant reference velocity. From equations (4) and (5), the perturbation can be
written as V = k2α(x, z) where k = ω/c0 and α(x, z) = 1− c20/v(x, z)2. The series for V can then
be expressed in a series for α, V =

∑∞
i=1 Vi = k2

∑∞
i=1 αi, and equation (1) becomes

D(xg, zg|xs, zs;ω) =

∫
dx

∫
dzG0(xg, zg|x, z;ω)k2α1(x, z)

×G0(x, z|xs, zs;ω), (6)

where zg and zs are receiver and source depths, respectively. The souce signature is included in V1.
In the following, we are going to write D(xg, zg|xs, zs;ω) as D(xg|xs;ω) and its Fourier conjugates.
The reference Green’s function is

G0(kx, z|x′, z′;ω) =
e−ikxx′

−2iq
(eiq|z−z′| − eiq|z+z′|), (7)

where q = sgn(ω)
√

ω2

c20
− k2

x is the vertical wave number, and kx is the conjugate variable of x. We

assume that α1 is invariant with respect to x, i.e. α1(x, z) = α1(z) and equation (6) becomes

D(kgx|ksx = kgx;ω) = 2π
sin(kzzs

2 ) sin(
kzzg

2 )

k2
z/4

ω2

c20
α1(kz),

where kz = qg + qs = 2qg. The sine functions on the r.h.s. are known to be responsible for the
removal of source and receiver ghosts (Krail and Shin, 1990; Weglein et al., 2003). For our purposes
we want to preserve all the original characteristics of the recorded data in α1, this will effect in
a prediction of near offsets in agreement with the measured data. Hence, we include the sine

functions in a more general parameter α̃1(kz) = α1(kz) sin(kzzs
2 ) sin(

kzzg

2 ),

D(kgx;ω) = 8π
1

k2
z

ω2

c20
α̃1(kz). (8)

The data have more degrees of freedom than α̃1, leading to a non-unique solution of the problem.
To perfect a migration/inversion, we would need an infinite receiver aperture. There are different
ways to prevail over this situation and compensate for the limitations due to an incomplete ac-
quisition. We choose to invert equation (8) with a weighted limited aperture migration/inversion
technique (Stolt and Benson, 1986; Wang, 1990; Stolt, 2002), allowing us to exploit the extra degree
of freedom the data have to attain a better solution.

The weighted limited aperture migration/inversion method can be expressed as

α̃1(kz) =

∫
dkgxL(kgx, kz)D(kgx;ω), (9)

∫
dkgx2π

ω2

c20

4

k2
z

L(kgx, kz) = 1. (10)
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We perform an inverse Fourier transform over kgx and kz, change the order of integration and the
variables from kz to ω and kgx to χ = c0

ω kgx,

α̃1(z) =
1

2π

∫
dxg

∫
dωI(z|xg;ω)D(xg;ω), (11)

I(z|xg;ω) =

∫
dχL(

ω

c0
χ, 2

ω

c0

√
1− χ2)

2ω

c20
√

1− χ2

× e−i ω
c0

(2z
√

1−χ2+χxg)
(12)

Assuming that the arbitrary weight function L varies slowly compared to the exponential, we solve
equation (15) using steepest descents (Bleistein and Handelsman, 1986). For a stationary point χ0

in a finite region a < χ0 < b,

I(z|xg;w) =

∫ b

a
dχf(χ)eiωg(χ); g′(χ0) = 0, g′′(χ0) 6= 0,

I(z|xg;w) =

√
2πi

ωg′′(χ0)
eiωg(χ0)f(χ0) +

1

iω

[
f(b)

g′(b)
eiωg(b) − f(a)

g′(a)
eiωg(a)

]
. (13)

Hence,

I(z|xg;w) =

√
c0πi

ωz

4ωz

c20

(
2z

r

) 3
2

L(kgx(χ0), kz(χ0))e
−iω r

c0

+
2

ic0

[
L(kgx(b), kz(b))

2zχ(b)− xg

√
1− χ(b)2

e
−iω(tb−

1
c0

(xg−xb)xb
rb

)

]

− 2

ic0

[
L(kgx(a), kz(a))

2zχ(a)− xg

√
1− χ(a)2

e
−iω(ta−

1
c0

(xg−xa)xa
ra

)

]
, (14)

where tb = rb
c0
, rb =

√
4z2 + x2

b , χb = xb
rb
, ta = ra

c0
, ra =

√
4z2 + x2

a, χa = xa
ra

, and χ0 =
xg

r , r =
√

4z2 + x2
g.

The first term on the r.h.s. of equation (14) is known as the stationary phase approximation.
It is the leading order term of an asymptotic expansion. The second and third terms contain
the contribution of the endpoints (χa and χb). The endpoints introduce noise to the image, α̃1,
producing diffraction-like events (Sun, 2002). If the aperture is positioned correctly with respect
to the stationary point, then the endpoints contribution must be eliminated by introducing a taper
function. The endpoints should be taken into account if the stationary point lies outside and far
away of the migration aperture. Under the assumption that α̃ is invariant over the horizontal
coordinates, all values in α̃1 corresponding to the stationary point χ0 =

xg

r are well positioned
within the aperture. Hence, a taper function, B, with geometrical information about the aperture
is included in the formalism as part of the arbitrary weight function (Stolt and Benson, 1986)

L(kgx, kz) = B(xa, xb, xg − xs)S(
kgx

kz
)F (ω), (15)
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where kgx and kz are evaluated at the stationary point. This description of the weight function
allows us to separate frequency from space variables at the stationary point. The simplest taper
function is a neutralizer defined as

B(xa, xb, xg − xs)|xs=0 =

{
1 if xg ∈ (xa, xb)

0 otherwise.
(16)

Substitute the neutralizer into equation (15) and define β =
kgx

kz
, to find a solution for equation (10),

∫ βb

βa

dβ2π(1 + 4β2)S(β)F (ω)kz = 1, (17)

where the limits of the integration are evaluated at the stationary point, i.e. βa = xa
4z , βb = xb

4z ,
representing the limits of the aperture that has been used.

Choose the arbitrary function F (ω) = c0
2π

1
kz

1√
1+4β2

= c0
4πω

−1, to take all the constants out of the

integration, and find

S(β) =
1√

1 + 4β2

1

βb − βa
. (18)

Replacing L by B,S and F , we obtain a formula for the limited aperture image of the data,

α̃1(z) =
1

4π2

1

xb − xa

∫ xb

xa

dxg
8z2

r3/2

×
∫ ∞

−∞
dω

√
2πi√
c0ω

e
−iω r

c0D(xg;ω). (19)

The limited aperture image, α̃1, is equivalent to a linearized migration/inversion with background
velocity, where the data contain all the original events and the source signature.

By definition a neutralizer is a taper function having all orders of partial derivatives. From the
analysis of equation (14), we only need partial derivatives up to second order and the aperture
correctly positioned so that the stationary point lies inside it. A taper function with derivatives
up to second order can improve the migrated image by minimizing the edge effects. Hence, we
can replace the neutralizer in equation (16) by a second order taper function (Fig.1) defined by
the chosen aperture, N1, and a subaperture, N0. Inside the subaperture, N0, the taper should
be unity and then decrease smoothly from unity to zero at the limits of N1. According to the
theoretical guideline for the design of the migrated aperture given by Sun (2002), N0 = 2

3N1.
It is also possible to replace the neutralizer in equation (16) by a one-side Hanning or triangular
window (Fig.2). The reason for keeping a neutralizer at the beginning of the aperture is that we
are interested in prediction of near offsets, hence we want to keep all the contributions from the
first recorded offsets. This is particularly helpful in shallow water acquisitions where most of the
arrivals are postcritical, and the method benefits from any precritical information. If the taper is
designed according to the criteria described above, the numerical results are slightly better with
the Hanning window than the triangular one (Sun, 2002). Then, B(xa, xb, xg) can be any of these
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Figure 1: Hanning or triangular window.
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Figure 2: One side Hanning or triangular window
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windows, and the limited aperture image of the data is given by

α̃1(z) =
1

4π2

1

xb − xa

∫ xb

xa

dxgB(xa, xb, xg)
8z2

r3/2

×
∫ ∞

−∞
dω

√
2πi√
c0ω

e
−iω r

c0D(xg;ω). (20)

3 Data extrapolation

The data generation is performed by using the calculated image, α̃1, as input to equation (8),

D(kgx;ω) = 8π
1

k2
z

ω2

c20
α̃1(kz),

D(xg; t) =

∫
dkgx

∫
dω

4k2

k2
z

e−iωt

∫
dzeikzzα̃1(z).

The integral over kgx is solved by the steepest descents method and a neutralizer. Due to the 1.5D
assumption, the stationary point is always inside the aperture. Hence,

D(xg; t) =

∫
dz

∫
dω4

√
−2πiω

c0
e−iωtr α̃1(z)

2z

√
r, (21)

where tr = t − r
c0

, and tr > 0. We use equations (20) and (21) to generate the data shown in the
1.5D examples.

If the data used in this 1.5D formulation has a 3D source, it is possible to add an extra weight
to the solution to obtain a better estimate of the amplitudes in the reconstructed data. The extra
weight is usually related with geometrical spreading, and is given by 4z2

r3/2 . With this weight, the
image and the extrapolator are written as:

α̃1(z) =
1

4π2

1

xb − xa

∫ xb

xa

dxgB(xa, xb, xg)
32z4

r3/2

×
∫ ∞

−∞
dω

√
2πi√
c0ω

e
−iω r

c0D(xg;ω),

D(xg; t) =

∫
dz

∫
dω4

√
−2πiω

c0
e−iωt α̃1(z)

2zr
. (22)

These equations are used in figure 5, where the data correspond to a single 2D line in a 3D
acquisition.

4 2-D theory

The theory for data extrapolation introduced in the previous sections can be extended to attain
the solution of a more realistic problem. Let’s start with equation(6) in 3D,

D(xg, yg, zg|xs, ys, zs;ω) =

∫
dx

∫
dy

∫
dz G0(xg, yg, zg|x, y, z;ω)

× V1(x, y, z, ω)G0(x, y, z|xs, ys, zs;ω); (23)
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once more, zg and zs are the constant depths of source and receiver, and we are going to write
D(xg, yg, zg|xs, ys, zs;ω) as D(xg, yg|xs, ys;ω). Now, assume that V1 has a similar expression to the
one in 2D but with lateral variations, i.e. V1 = k2α1(x, y, z). Hence,

D(xg, yg|xs, ys;ω) =

∫
dx

∫
dz G0(xg, yg, zg|x, y, z;ω)k2α1(x, y, z)

× G0(x, y, z|xs, ys, zs;ω),

D(kgx, kgy|ksx, ksy;ω) =
sin(qszs)sin(qgzg)

qgqs

∫
dx

∫
dy

∫
dze−i(kgxx+kgyy)

× eiqgzω
2

c20
α1(x, y, z)e

i(ksxx+ksyy)eiqsz,

and

D(kgx, kgy|ksx, ksy;ω) =
1

qgqs

ω2

c20
α̃1(kgx − ksx, kgy − ksy, qg + qs), (24)

(25)

where

α̃1(kgx − ksx, kgy − ksy,qg + qs) = α1(kgx − ksx, kgy − ksy, qg + qs)

× sin(qgzg)sin(qs, zs) (26)

equation(24) is a three dimensional solution of migration/inversion. However, in many practical
situations the earth is quasi-2D, and the data are collected along 2D line(s) with point sources
(2.5D problem). Assuming that α̃1 is invariant in y direction (perpendicular to the seismic survey
line) we may relate the point source to a line source, and use 2D theory. Thus, α̃1(x, y, z) = α̃1(x, z),
and α̃1(kgx − ksx, kgy − ksy, qg + qs) = 2πδ(kgy − ksy)α̃1(kgx − ksx, qg + qs). Following the results
from Stolt and Benson (1986); Wang (1990), the conversion from point source to line source leads
to the following compensation,

D2.5(xg|xs; t) =
√
tD(xg|xs; t),

D2.5(kgx|ksx;ω) =

√
−iω
π

ω2

c30

α̃1(km, kz)

qgqs
, (27)

where km = kgx − ksx is the conjugate of the midpoint coordinate xm =
xg+xs

2 of the data and of
the x coordinate in α̃1.

The limited aperture migration/inversion method can be expressed in 2.5D as

α̃1(km, kz) =

∫
dkhL(km, kh, kz)D(kgx|ksx;ω), (28)

α̃1(x, z) =
1

(2π)2

∫
dkm

∫
dkz

∫
dkhe

i(kmx−kzz)L(km, kh, kz)

×
∫

dxg

∫
dxse

−i(kgxxg−ksxxs)D(xg|xs;ω), (29)

∫
dkh

√
−iω
2π

ω2

c20qgqs
L(km, kh, kz) = 1, (30)
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where kh = kgx + ksx is the conjugate of the half offset coordinate xh =
xg−xs

2 .

Changing the order of the integrals and the integration variables from km, kh and kz to kgx, ksx and
ω, respectively, yields

α̃1(x, z) =
1

(2π)2

∫
dxg

∫
dxs

∫
dωI(x, z|xg, xs, ω)D(xg|xs;ω) (31)

I(x, z|xg, xs, ω) =

∫
dkg

∫
dkse

ikgx(x−xg)eikzze−iksx(xs−x)ωkzL(km, kh, kz)

c20qgqs
. (32)

We use the stationary phase approximation to solve equation(32),

I(x, z|xg, xs, ω) =

∫ b

a
dkge

ig(kgx)

∫
dkse

ih(ksx)f(kgx, ksx); (33)

g′(kgx0) = h′(ksx0)0, g
′′(kgx0) 6= 0,

h′′(ksx0) 6= 0, a < kgx0 < b; a < ksx0 < b;

I(x, z|xg, xs, ω) =

√
2πi

g′′(kgx0)

√
2πi

h′′(ksx0)
f(kgx0, ksx0)e

i(g(kgx0+h(ksx0); (34)

where

kgx0 =
ω

c0

xg − x
rg

, rg =
√
z2 + (xg − x)2,

ksx0 =
ω

c0

x− xs

rs
, rg =

√
z2 + (x− xs)2.

Thus,

I(x, z|xg, xs, ω) =
2πiz2

c20

rg + rs

r
3/2
g r

3/2
s

L(km0, kh0, kz), (35)

where km0 = kgx0 − ksx0 and kh0 = kgx0 + ksx0.

In agreement with the previous calculations, we define the arbitrary weight function to have a
geometrical part related with the aperture in 2D, and we separate space variables from frequency
at the stationary points kgx0 and ksx0,

L(km, kh, kz) = B(ha, hb, xg − xs)S(η, β)F (ω), (36)

β =
kh

kz
, η =

km

kz
∫

dβ

√
−iω
π

ω2

c30qgqs
B(ha, hb, xg − xs)S(η, β)F (ω) = 1, (37)

where ha and hb represent offset coordinates at the limits of the aperture, ha =
xga−xsa

2 and

hb =
xgb−xsb

2 .

Introducing a neutralizer,

B(ha, hb, xg − xs) =





1 if
xg−xs

2 ∈ (ha, hb)

0 , otherwise,

(38)
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and evaluating the variables β and η at the stationary points,

β0 =
(xg − x)rs + xrg

2r
; r = rg + rs; (39)

η0 =
(xg − x)rs − xrg

2r
; (40)

h =
xg − xs

2
= zβ

1 + η2

1− η2β2
, (41)

we find,
∫ βb

βa

dβ

√
−iω
π

ω2

c30qgqs
S(η, β)F (ω) = 1, (42)

where,

βi =

√
(1 + η2

0)
2 + 4η2

0h
2/z2 − (1 + η2

0)
2

2η0h/z
, (43)

i.e. the limits of the integral are evaluated at the boundaries of the aperture described by the
neutralizer. Finally,

α̃1(x, z) =
−2
√

2z

(2π)2

∫ xsb

xsa

dxs

∫ xs+2hb

xs+2ha

dxg
rg + rs

(rgrs)3/2

1− η2
0β

2
0√

1 + η2
0

√
1 + β2

0

1

βa − βb

×
∫ ∞

−∞
dω
e−

3π
4
−ωt

√
2πω

D(xg, xs, ω), (44)

is the limited aperture image of the data in 2.5D. The extrapolation of the data is done by
introducting α̃1 into equation (24) and performing the appropriate Fourier transforms to bring the
data back to space and time domain. It is also possible to use the stationary phase approximation
to solve either the integral over ω or the integrals over kgx and ksx.

5 A single shot approximation

Dapeng Wang (1990) shows a method to find the limit of the finite aperture migration/inversion
when the aperture is reduce to a single trace. Using reciprocity principles, we are going to use his
idea to find the limit of α̃1(x, z) when the aperture of the data reduces to a single shot. We first,
change the order of the integrals in equation (44),

α̃1(x, z) =
−2
√

2z

(2π)2

∫ xgb

xga

dxg
1

r
3/2
g

∫ xg−2hb

xg−2ha

dxs
rg + rs

(rs)3/2

1− η2
0β

2
0√

1 + η2
0

√
1 + β2

0

1

βa − βb

×
∫ ∞

−∞
dω
e−

3π
4
−ωt

√
2πω

D(xg, xs, ω), (45)

and take the limit of xs → 0, so that

lim|xs→0(α̃1(x, z)) =
−2
√

2z

(2π)2

∫ xgb

xga

dxg
rg + rs|xs→0

(rgrs|xs→0)3/2

1− η2
0|xs→0β

2
0 |xs→0√

1 + η2
0|xs→0

√
1 + β2

0 |xs→0

× 4xs → 0

βa − βb

∫ ∞

−∞
dω
e−

3π
4
−ωt

√
2πω

D(xg, xs → 0, ω), (46)
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at the limit

4xs → 0

βa − βb
→ ∂xs

∂β

∂xs

∂β
=

zrsr
2

(x2 − x(xg − x))rg − rgrsr
. (47)

The limited aperture image of the data for a single shot is given by

α̃1(x, z)|xs=0 =

∫ xgb

xga

dxg
r

(rgrs)3/2

1− η2
0β

2
0√

1 + η2
0

√
1 + β2

0

zrsr
2

(−x(xg − x) + x2)rg − rgrsr

× −2
√

2z

(2π)2

∫ ∞

−∞
dω
e−

3π
4
−ωt

√
2πω

D(xg, xs, ω),

α̃1(x, z)|xs=0 =

∫ xgb

xga

dxg
r3

(rgrs)3/2

√
1 + η2

0β0

h
√

1 + β2
0

1

(−x(xg − x) + x2)rg − rgrsr

× −2
√

2z3

(2π)2

∫ ∞

−∞
dω
e−

3π
4
−ωt

√
2πω

D(xg, xs, ω). (48)

The single shot approximation requires much less computational effort than the full 2.5D version
presented in the previous section. It is a significant cost saving, allowing to compute each shot inde-
pendently. Using a single shot per 2D line makes the extrapolation process become less expensive.
Plus, it preserves the wavelet’s shape (for a given shot) in the reconstructed traces.

6 Numerical Examples

In this section we present three numerical examples to test the 1.5D theory. Figure 3 shows a
simple deep water test. The first reflector is at 500m. The background velocity is 1500m/s,
and the the first layer’s velocity 4000m/s. The synthetic data are shown on the left, the r.h.s.
shows the reconstructed near offsets (0m-200m.) using an aperture of 25 traces and receiver
separation of 12.5m. The result shows excellent agreement in amplitude, time and shape between
the reconstructed traces and the original synthetic data.

A synthetic shallow water dataset is shown on the left of figure 4. The first reflector is at 100m
and the second is at 310m. The background velocity is 1500m/s, the velocity in the second layer
is 2850m/s and 6500m/s for the third layer. The data contain ghosts, headwaves, primaries and
multiples. The data on the right show reconstructed near offsets (0m-187.5m) using an aperture
of 15 traces. The results are accurate in time, but amplitudes are less accurate.

The example in figure 5, uses equations (22) where the data correspond to a single 2D line in a
3D acquisition. The left half of the figure is the data with the reconstructed near offsets using the
1.5D algorithm with geometrical weight, equations (22). The right half displays the original data.
We observe that the prediction down to 1s is accurate. This is because the first reflectors that
generate these data are laterally invariant and within the assumptions of the prediction formulas.
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Figure 3: Deep water example.

Figure 4: Shallow water example.

7 Conclusions

One of the most challenging problems in marine exploration is incomplete data coverage. In partic-
ular the problem of missing data at near offsets. Data extrapolation with the first inverse equation
does not require a priori subsurface information, nor any preprocessing. Using V1 gives an exact
mathematical expression, while V leads to an approximation that is not a good estimate for either
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Figure 5: The reconstructed near offsets (using 1.5D method with extra weighting) are displayed within
the rectangle.
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primaries or multiples.

The near-offset reconstruction method presented in this work, uses only the first inverse equation.
It is not a subseries of the inverse scattering series and it does not require any preprocessing. The
first inverse equation gives a mathematical framework for data reconstruction because it represents
an exact data mapping with no other assumptions. If we relax the interpretation of aperture
migration as an earth property inversion and allow it to be the factor that sitting between two G0’s
predicts all of your data; then having that factor we can evaluate the G0’s at the locations where
the data were not measured and reconstruct it.

With the single shot approximation, the computational time and cost become negligible. It lowers
the requirements and mathematically preserves the shape of the reconstructed traces with the raw
data in each shot record. But, as an approximation it may lead to a less accurate prediction when
the data comes from a more complex geology. This approximation is justified given moderate dips
and refractors. Further testing needs to be done.

The full 2.5D data reconstruction method is being tested and extensions to 3D are being developed.
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Application of the extinction theorem deghosting method to ocean bottom data

Jingfeng Zhang and Arthur B. Weglein

Abstract

As one of the pre-requisites for multiple removal, imaging and inversion, the effectiveness of
deghosting affects the performance of its followed operations. The Extinction Theorem based
deghosting method has been successfully applied on towed streamer data in last year’s annual
report. In that paper, the deghosted data were then processed using the inverse scattering
series (ISS) free surface multiple removal (FSMR) algorithm, and it was shown that using
deghosted data and the source wavelet, the ISS FSMR can predict the free surface multiples
accurately both in time and amplitude. Thus, the ISS FSMR algorithm with appropriate wavelet
and deghosting directly predicts and subtracts the free surface multiples without the need of
adaptive subtraction. In practice, this will mitigate the need for adaptive subtraction; and its
sometimes harmful application that can run at cross purposes to the underlying strength of the
ISS FSMR method. In this paper, we apply the same deghosting algorithm on ocean bottom
data. With source wavelet available, only pressure measurements have been used in the process
of deghosting and this avoids the need for the troublesome vertical velocity measurements.
Initial tests show that the deghosting results agree very well with the exact results calculated
using the Cagniard-de Hoop method.

1 Introduction

In seismic exploration, a common sequence of data processing is source wavelet estimation, deghost-
ing, free surface multiple removal, internal multiple removal, imaging and inversion. This sequence
of processing steps is like a chain of tasks in the sense that the performance of the later opera-
tions could be affected by the former ones. As one of the pre-requisites for imaging and inversion,
deghosting has received more and more attention recently. Part of the reason is that more and/or
better information are expected to be extracted from the data at every processing stage (free sur-
face and internal multiple removal, imaging and inversion). Deghosting could affect (sometimes
critically) the performance of the above mentioned procedures. For example, deghosting is one of
the pre-requisites for free surface multiple removal. Using adaptive subtraction, there are many
situations where free surface multiple removal algorithm works well without deghosting. But for
complex media, where severe overlapping can happen between primaries and multiples and adap-
tive subtraction has a difficult time, better prediction of multiples is very important and can be
achieved using deghosted data. Also, ghost effects are angle dependent and thus, inversion such as
AVO could be affected by ghost events. For some recently developed processing techniques such
as imaging with reference medium velocity (e.g., Weglein et al., 2000, Shaw et al., 2003, Liu et
al., 2005 and Innanen, 2005) and nonlinear inversion (Zhang and Weglein, 2005a), deghosting is a
crucial step since those algorithms assume the data is fully deghosted and put a very high bar on
the data quality.

The deghosting algorithm we derived is based on Green’s/Extinction theorem and was firstly given
by Weglein et al.(2002). We tested it on towed streamer data last year (Zhang and Weglein, 2005b)
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and very good deghosting results were obtained. The deghosted data was then put into the ISS
FSMR algorithm (Carvalho, 1992 and Weglein et al., 1997 and 2003) and accurate prediction of
free surface multiples was obtained. Then the free surface multiples in the data were eliminated
through a trivial subtraction instead of adaptive subtraction.

This year we test its application on ocean bottom data. Unlike the towed streamer case, point
receivers are usually used on ocean bottom. So we don’t need to test the receiver array effect. The
deghosted results are compared with the exact one which is calculated using Cagniard-de Hoop
method. Initial tests show that very good results can be obtained. We will not show the ISS
FSMR results in this paper. But we would like to point out that the direct application of some
surface multiple methods (e.g., Verschuur, 1991) on ocean bottom data will cause the predicted free
surface multiple not having the correct arrival time, unless a separate data extrapolation has been
performed on the seismic data in advance. The details will be discussed in the following sections.

In the next section, a brief review of the deghosting theory is provided. Then, numerical tests and
acknowledgements are given.

2 Theory

Motivations and different methods about deghosting have been extensively discussed in literature
(e.g., Schneider, 1964; Robertsson and Kragh, 2002; Weglein et al., 2002 and Amundsen et al.,
2005). The deghosting method we used in this paper is firstly provided in Weglein et al., (2002).
The receiver side deghosting formula is:

P up(r, rs, ω) =

∫

MS

(
P (r′, rs, ω)

∂G+
0 (r, r′, ω)

∂z′
−G+

0 (r, r′, ω)
∂P (r′, rs, ω)

∂z′

)
dS′. (1)

A similar operation performed on the source side removes the source side ghosts. Clearly, we
need both the wave field and its vertical derivative to perform deghosting. With ocean bottom
data, both measurements are available. However, there are several reasons not to directly use
both measurements in Eq.1. The first reason is the different instrument response factor. On
ocean bottom, the pressure/wavefield and its vertical derivative are measured by hydrophone and
geophone respectively. Usually the instrument response factors of the two kinds of equipment are
different. To achieve better processing results such as the integration in Eq.1, it is necessary to
calibrate the two response factors which is not an easy task. The second reason is that the vertical
derivative of the measurements can be inaccurate due to the loose attachment of the geophone to
the ocean bottom. The last reason is that geophone measurements are usually very noisy. In this
paper, we calculate the vertical derivative of the wavefield using the triangle relationship among the
source wavelet A(ω), wavefield (P ) and its vertical derivative ( dP

dz ) in the frequency-wavenumber
domain (Weglein and Secrest, 1990 and Amundsen, 2001):

dP (kx, z
′, xs, zs, ω)

dz
=

A(ω)eikxxs(e−ikzzs − eikzzs)

e−ikzz′ − eikzz′
− ikzP (kx, z

′, xs, zs, ω)
e−ikzz′ + eikzz′

e−ikzz′ − eikzz′
, (2)

where kz =
√
k2 − k2

x. The advantage of this method is that the obtained dP
dz will naturally have

the same instrument response factor as P , as long as the source wavelet (A(ω)) is obtained from
methods based on hydrophone measurements.
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The disadvantage of using Eq.2 is the unstable spectral division. Whenever the denomenator ap-
proaches zero, the numerical division is usually unstable. For large cable depths, i.e., big z ′, the de-

nomenator is often zero. In our numerical calculation, we only calculate the values of dP (kx,z′,xs,zs,ω)
dz

at those kx where the absolute value of the denomenator is far from zero (e.g., > 0.3). Then the

values of dP (kx,z′,xs,zs,ω)
dz at those unstable points will be interpolated using cubic spline interpo-

lation. As shown in the next section, the initial results are satisfactory, but there are still some
artifacts that need to be removed. How these artifacts are removed/attenuated is the subject of
future work.

3 Numerical tests

The numerical tests are based on a simple 1D acoustic model. Using the Cagniard-de Hoop method,
we generate synthetic data for the model in Fig.1. The source wavelet is a Ricker wavelet. The
advantage of the Cagniard-de Hoop method is that we can accurately calculate any specific event we
are interested in so that we can compare it with the results predicted by our deghosting algorithms.

In Fig.2, we illustrate the primary, its ghosts, and their summation. Apparently, the summation
of these events are very different than the primary. Most importantly, the receiver ghost and the
source-receiver ghost arrive significantly later than the primary and its source ghost, due to the
big depth of the receivers. Let’s explain in detail each event in Fig.3. The direct wave (Event
(a)) arrives at exactly the same time as the primary (Event (b)). The only difference is that the
former one does not hit the earth while the latter one hits the earth first then is recorded by the
hydrophone. Similarly, the receiver ghost of the primary (Event (c)) arrives exactly at the same
time as the first order free surface multiple (Event (d)) and the source-receiver ghost of the primay
(Event (e)) arrives exactly at the same time as the source ghost of the first order free surface
multiple (Event (f)).

If we simply convolve the ocean bottom data with itself to predict free surface multiples, the arrival
time of the predicted first order free surface multiple will be very different from the actual one. So
a separate data extrapolation operation to move the data from ocean bottom to the free surface
is needed in order to ensure that the predicted free surface multiple has approximately the right
arrival time. This step is performed naturally in the inverse scattering series based free surface
multiple removal method.

In the following, we will present the receiver side deghosted result for the data that contain only
primary and its ghosts. The data that contain direct wave and surface multiple events will be
tested in the future.

In Fig.4, the deghosting results at four offsets are compared with the exact deghosting results and
the data before deghosting. After receiver side deghosting the later event has been removed while
the earlier events (primary and its source ghost) are kept. The source ghost can be further removed
by a source side deghosting and the test is currently underway. There are two possible reasons for
the artifacts in Fig.4 (e.g., at around 0.1s in (a)). The first one is due to the spectrum division
in Eq. 2 which generates some errors. The other one is the error introduced because of limited
aperture in the Fourier transform over space.
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4 Conclusions

Using an Extinction theorem based deghosting algorithm, we have performed receiver side deghost-
ing on ocean bottom data. Instead of requiring the difficult to accurately measure vertical derivative
of the wavefield, it is calculated through the triangle relationship using the source wavelet and the
pressure wavefield. The results are encouraging and further data tests and comparisons are under-
way.
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Figure 2: Top: Each specific event; Bottom: The summation of each event.

Figure 3: Empty circle means the wave does not hit the earth and solid circle means the wave hit the
earth and then reflected upward and recorded by the receiver. (a): The direct wave; (b) The
primary; (c) The receiver ghost of the primary; (d) The first order free surface multiple; (e)
The source-receiver ghost of the primary and (f) The source ghost of the first order free surface
multiple.
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Abstract

We study the 2-parameter acoustic Born series for an actual medium with constant velocity
and a density distribution. Using a homogeneous background we define a perturbation, the
difference between actual and reference medium∗, which exhibits an anisotropic behavior due to
the density distribution. For an actual medium with a constant velocity, the reference velocity
can be selected so that the waves in the actual medium travel with the same speed as the
waves in the background medium. Scattering theory decomposes the actual wave field into an
infinite series where each term contains the perturbation and the propagators in the background
medium. Hence, in this formalism, all propagations occur in the background medium and the
actual medium is included only through the perturbations, which scatters the propagating waves.
The density-only perturbation has an isotropic and an anisotropic component. The anisotropic
component is dependent on the incident direction of the propagating waves and behaves as a
purposeful perturbation in the sense that it annihilates the part of the Born series that acts
to correct the time to build the actual wave field, an unnecessary activity when the reference
velocity is equal to the one in the actual medium. This means that the forward series is not
attempting to correct for an issue that does not exist. We define the purposeful perturbation
concept as the intrinsic knowledge of precisely what a given term is designed to accomplish. This
is a remarkable behavior for a formalism that predicts the scattered wave field with an infinite
series. At each order of approximation the output of the series is consistent with the fact that
the time is correct because the velocity is always constant. In the density-only perturbation,
the forward series only seeks to predict the correct amplitudes. Finally, we extend the analysis
to a wave propagating in a medium where both density and velocity change. By selecting a
convenient set of parameters, we find a conceptual framework for the multiparameter Born
series. This framework provides an insightful analysis that can be mapped and applied to the
concepts and algorithms of the inverse scattering series.

1 Introduction

In recent years, the inverse scattering series has proven to be a good framework for solving the free
surface and internal multiple problem from surface seismic (Weglein et al., 1981, 1997) without the
need for a velocity model. Recently, the inverse scattering series has given results which indicate
that it can also be a good framework for doing imaging and inversion without a velocity model
(Weglein et al., 2003; Shaw, 2005; Liu et al., 2005b,a; Zhang and Weglein, 2005). Shaw (2005)
showed that a 1D earth can be imaged without the velocity model. Later, Liu et al. (2005b)

This work was done while working as a visiting faculty at M-OSRP, Dept. of Physics, University of Houston, in
2004.

∗We use background medium and reference medium interchangeably. No distinction is intended between them.
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showed some early examples where the inverse scattering series is also able to image a 2D earth
without the velocity model.

In the above references, it is assumed that the inverse scattering series can be divided into different
subseries, where each subseries is responsible for solving a single task of the inverse problem (Weglein
et al., 2003). These single tasks are divided into the tasks which are common in standard seismic
processing workflow:

• Free surface multiple removal

• Internal multiple removal

• Imaging

• Inversion for earth parameters

In addition, the inverse scattering series will contain terms that contribute to solve more than a
single task. These terms are omitted in the framework suggested by Weglein et al. (2003).

In this paper we study the forward scattering series (also known as Born or Neumann series) in
order to identify or shed light on which terms in the inverse scattering series are important for doing
imaging. Matson (1996) showed analytically for the 1D one parameter acoustic wave equation the
validity of the ideas and concepts introduced by Weglein et al. (1981, 1997, 2003) and used in
the developent of inverse scattering processing methods (see for example Weglein et al. (2003)).
The mathematical analysis and study of the forward series and its relation with seismic events
was revisited by Nita et al. (2004) and by Innanen and Weglein (2003), the latter work included
absorption and velocity changes in the transmission analysis of the forward series. We will extend
Matson’s original analysis by studying how the forward scattering series builds up the solution of
the two parameter acoustic wave equation from a homogenous background. We will see that the
terms containing a velocity perturbation are the terms that contribute to construct the correct time
for the wave traveling in the actual medium.

The density perturbation will only contribute to building up the correct amplitude response of the
actual wave field.

In the first section, we introduce the Lippmann-Schwinger equation and the forward scattering
series used in this paper, which is constructed from the two-parameter acoustic wave equation. It
also gives an introduction to how we choose to interpret each term in the series.

In the second section, we study the simple case of a 1D acoustic medium where only density changes.
We show that the forward series does not calculate terms contributing to correcting the time of
the actual wave field. Then, we extend the analysis to allow for an actual medium in which both
parameters, velocity and density, change. In this case, we identify a special parametrization which
helps us in interpreting the tasks of each term in the forward series. Hence, it is important to note
that the interpretation of the tasks which each term in the forward series does is dependent of the
choice of parameters used.

In the last part of this work, we present an analysis of the framework introduced in the first two
sections. The relations between the forward and inverse scattering series are studied. Even if
these two series have completely different tasks to solve, symmetry relations between them can be
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Figure 1: The Figure displays the two models used by Matson (1996).

found. Both the forward and the inverse series can be written as a sum of diagrams, i.e. Feynman
diagrams. By studying the series and its diagrams it is found that the time corrector diagrams,
which resembles a transmission-like event, in the forward series correspond with the depth corrector
diagrams in the inverse scattering series. In addition, it is found that diagrams that resemble a
reflection like event in forward series correspond to a self-interaction like diagram in the inverse
series. Both these diagrams are responsible for correcting the amplitudes of the actual wave field or
the medium properties, respectively. It is also found that both forward and inverse series utilizes
the concept of purposeful perturbation, i.e. that the series know a priori that there is no series to
sum if the task is not required. Each term in the task-specific subseries returns zero.

In the concluding section we sum up the results obtained throughout the paper.

2 The Lippmann-Schwinger equation

The purpose of forward scattering series is to find the wave field produced by a localized source and
propagated through a certain medium. The forward series constructs the solution by adding an
infinite number of terms, each one corresponding to propagations in the reference medium separated
by different orders of scattering interactions with a point scatterer earth model.

We present a brief background to scattering theory and forward scattering series, following the
development provided in Stolt and Weglein (1985); Matson (1996, 1997); Innanen and Weglein
(2003); Nita et al. (2004) wherein further detail, contributors and references can be found.

A simple, yet insightful, problem to consider is scattering from a half space where only the velocity
is allowed to change, like the one shown in Fig.1a. This model has been studied by Matson
(1996, 1997) and Nita et al. (2004), and led to a clear comprehension of the unique properties in
the formulation of the forward series that can be used to understand and work with the inverse
scattering series and its subseries. We want to build a similar understanding by considering another
simple case in scattering theory: scattering from a half space where only the density is allowed to
change. We then extend this analysis to a change in both, density and velocity.

For a model with velocity and density distributions, Fig.2, which are constant over intervals and
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discontinuous at the interval boundaries, the actual medium satisfies the acoustic wave equation,
(
∇ · 1

ρ(x)
∇+

ω2

ρ(x)c2(x)

)
P (x|x′;ω) = δ(x− x

′), (1)

where P (x|x′;ω) is the actual pressure field at point x and frequency ω due to a source located at
x′ ignited at t = 0; ρ(x) is the density distribution and c(x) is the velocity distribution.

The reference medium will be chosen as a homogeneous whole space satisfying the acoustic wave
equation,

(
∇ · 1

ρ0
∇+

ω2

ρ0c20

)
G0(x|x′;ω) = δ(x− x

′), (2)

where G0(x|x′;ω) is the causal free space Green’s function.

The velocity and density distributions in Eq.(1) can be written in a convenient form, described by
a constant reference velocity c0 and density ρ0, and their corresponding perturbations, α(x) and
β(x), so that

1

c(x)2
=

1

c20
(1− α(x)) , (3)

1

ρ(x)
=

1

ρ0
(1− β(x)) . (4)

The perturbation, V , is the difference between the reference and actual medium properties defined
by the wave equation operators in Eq.(1) and Eq.(2),

V (x;ω) = ∇ 1

ρ0
∇+

ω2

ρ0c20
−
(
∇ · 1

ρ(x)
∇+

ω2

ρ(x)c2(x)

)

= ∇ ·
(

1

ρ0
− 1

ρ(x)

)
∇+ ω2

(
1

ρ0c20
− 1

ρ(x)c2(x)

)

=
1

ρ0
∇ · β(x)∇+

ω2

ρ0c20
(1− (1− β(x))(1− α(x))) . (5)

Using G0 as the reference wave field we can write the Lippmann-Schwinger equation,

P (x|x′;ω) = G0(x|x′;ω) +

∫ ∞

−∞
G0(x|x′;ω)V (x′;ω)P (x|x′;ω), (6)

or in operator form,

P = G0 +G0V P, (7)
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which is an integral equation corresponding to Eq.(1) and its physical boundary conditions (G0 is
a causal Green’s function and V contains the properties of the actual medium). The Lippman-
Schwinger equation is a mathematical identity that describes the relationship between two wave
fields, G0 and P . The two wave fields satisfy two different wave equations. The fields are con-
nected through common boundary conditions, the difference in the wave equation operators, V ,
and sources. A formal solution to the Lippman-Schwinger equation can be found through a series
expansion,

P = G0 +G0V P

m
P = (I −G0V )−1G0

= (I +G0V +G0V G0V +G0V G0V G0V + · · · )G0

≡ P0 + P1 + P2 + · · · , (8)

where P0 = G0. The forward scattering series, Eq.(8), gives a solution for the actual wave field,
P , in terms of the reference wave field, G0, and the perturbation operator, V . So, in principle, by
summing an infinite number of terms which involves the reference wave field and the perturbation,
it is possible to model the actual wave field, P , with correct phase and amplitude. In other words,
the forward series is able to predict the correct amplitude and phase of a wave field by letting a
reference wave field, with its own amplitude and phase, interact with the perturbation and after
summing an infinite amount of terms.

Since the reference wave field, G0, travels with a velocity given by the wave equation for the
reference medium, it is obvious that the perturbation operator, V , is responsible for obtaining the
correct time and amplitude of the actual wave field by interacting with the reference wave field.
The perturbation operator is the only entity in the Born series that contain information about the
actual medium. How this process is taking place is not obvious, and one of the main objectives
of this paper is to show how the Born series obtain the correct phase and amplitude of the actual
wave field by summing an infinite amount of terms in an acoustic model, i.e. with density and
velocity contrasts.

Now, using the wave fields and perturbation defined in equations (2) - (5) we have the following
representation of the Born series in equation (8),

P (xg|xs) = G0(xg|xs)

+

∫ ∞

−∞
dxG0(xg|x)V (x)G0(x|xs)

+

∫ ∞

−∞
dxdx′G0(xg|x)V (x)G0(x|x′)V (x′)G0(x

′|xs)

+

∫ ∞

−∞
dxdx′dx′′G0(xg|x)V (x)G0(x|x′)V (x′)G0(x

′|x′′)V (x′′)G0(x
′′|xs)

+ · · · . (9)

We have omitted the frequency dependency for convenience.

The Born series can be interpreted as a sequence of infinitely many scattering processes, where the
first term is the Green’s function in the reference medium which represents a wave propagating in
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the reference medium from the source at xs, directly to the measurement point, xg, as shown in
Fig. 3a.

The second term in the Born series contains V (x) sitting between two wave fields propagating in
the reference medium. The wave field on the right represents a wave propagating in the reference
medium from the source, xs, down to a scattering point at x. The wave field is now scattered by
the perturbation V (x) before it propagates to the measurement described by the wave field on the
left. The integration means that you sum over all scattering configurations you can possibly have
with a given perturbation. This process is displayed in Fig. 3b with a single scattering diagram.
Diagrams are tools of interpretation and analysis for both, the inverse and forward scattering series,
that are equivalent to Feynman diagrams in quantum mechanics. They were first introduced and
applied in exploration seismology by Weglein et al. (1981, 1997, 2003).

The third term represents a sum over waves which propagate in the reference medium and undergo
two scattering interactions. Following this interpretation of the scattering process, each term in
the Born series involves a series of propagations and interactions with points within the scattering
region. See Fig. 3c.

A cartoon of the fourth term in the forward series which involves three scatterers is shown in Fig.
3d.

The perturbation operator in the Born series is responsible for scattering the incoming wave, i.e.
giving it a new direction and amplitude. And since the perturbation operator is dependent on the
model used, the scattering pattern is dependent on the medium. As already mentioned, it is the
scatterer acting on the field in the reference medium which is responsible for generating the correct
amplitude and exact phase of the actual wave field.

The perturbation operator contain the differences in medium properties which the two wave fields
have experienced, e.g. density and velocity in the acoustic case. In the forward series the reference
field interacts with the whole perturbation operator to generate the correct field. Intuitively, in a 1D
acoustic world with constant velocity and a density distribution, one would expect this velocity to
be responsible for giving the correct time of the actual wave field. And the task for the perturbation
to create the correct amplitudes. This is not obvious and it is one of the main objectives of this
paper to use a simple analytical model to study the behavior of the Born series and how it generates
the output field in the acoustic case with changes in density only.

The reason we want to do this exercise is not to find a more efficient way to do forward modelling
with the forward series, but to give us a guide to how we can solve the inverse problem, i.e. if we
want to do imaging with the inverse scattering series, how should we select the model? Can we have
a model type independent imaging algorithm? Is it sufficient with velocities only? Will the densities
be necessary to consider? What about using the Lamé parameter, λ = ρc2? What is the best choice
to do imaging? What are the implications to non-linear AVO based on inverse scattering? The
exercise we do here will give us a hint about how to choose the best model parameters, using
symmetry relations between the forward and inverse scattering series.

3 Analytical Examples

The perturbation operator in the Born series contain the differences in medium properties which
the two wave fields have experienced, e.g. density and velocity in the acoustic case. In the forward
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(d) Triple scattering

Figure 3: The Figure displays the first four terms in the Born series, where (a) shows the direct wave
propagating from source to receiver; (b) a propagation from source down to the scattering point,
x, and propagation to receiver; (c) a propagation from source down to the scattering point, x,
propagation from x to x

′, and propagation to receiver; (d) a propagation from source down to
the scattering point, x, propagation from x to x

′, propagation from x
′ to x

′′, and propagation
to receiver.
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series the reference field interacts with the whole perturbation operator to generate the actual field.
Intuitively, in a 1D acoustic world with constant velocity and changing densities, one would expect
this velocity to be responsible for the prediction of the correct time of the actual wave field. And
the task for the perturbation and all non-linear forward series activity is to correct the amplitudes.
How this accurs is not obvious and in this section we will go through some analytical examples in a
1D model with a single interface to demonstrate how the forward series generates the actual wave
field.

3.1 A 1D earth with constant velocity and changing densities.

There are some questions we want to answer: What happens if the perturbation operator only
contains a difference in the densities? In that case we know that the reference wave field has the
same time behavior as the actual wave field and there is no reason for the forward series to correct
the time. How does the series accomplish this? Will it add and subtract non-zero terms an infinite
number of times gradually converging to zero, or will it know from the first term that there is no
time to be corrected? In order to answer these questions, we will study a simple acoustic 1D model
with a single interface where the velocity is constant over the interface and the density changes.
The model is displayed in Fig. (4).

  ρ
0

1

ρ c
0

0
c

z=a

Figure 4: Model with constant velocity and density perturbation.

In a medium with constant velocity, the actual medium satisfies the acoustic wave equation in
equation (1), with c(x) = c0, and the reference medium satisfies equation (2). The perturbation is
in this case given by

V =
ω2β(x)

ρ0c20
+

∂

∂x

β(x)

ρ0

∂

∂x
, (10)

which is equation (5), with α(x) set to zero. In 1D, the perturbation will depend on depth only,
and the perturbation for the model in Fig. (4) is given by

V =
ω2β(z)

ρ0c20
+

∂

∂z

β(z)

ρ0

∂

∂z

=
ω2βH(z − a)

ρ0c20
+
β

ρ0

∂

∂z
H(z − a) ∂

∂z
, (11)

where H(z − a) is the unit step or Heaviside function.

We are going to define the first term on the right hand side of the perturbation in equation (11)
as isotropic and the second term, containing the gradients, as anisotropic. The isotropic part is
similar in form and behaviour, to the velocity perturbation that Matson (1996) used in his work
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which is the perturbation in equation (5) with β(x) = 0 and α(x) = αH(z−a). The isotropic part
depends on the background velocity and treats all directions with equal weighting. The anisotropic
part depends only on the density, and it has two gradients. These gradients, will generate factors
that depend on the direction of the incident reference wave field.

In a 1D homogenous earth, the solution to the wave equation in equation (2) is

G0(z|zs;ω) = ρ0
eik|z−zs|

2ik
, (12)

where k = ω
c0

. Note that G0 has the correct time since the velocity in the reference medium, c0,
agrees with the velocity in the actual medium. Hence, the travel time prediction is correct at the
first term, P0 = G0, in the forward series. And we would expect it to remain correct at every order
of approximation of the wavefield, Pi, since each term propagates with the actual velocity.

The forward series has terms, which we represent with transmission-like diagrams Fig. (6), that
add to generate the correct arrival time of the scattered wavefield. The reference Green’s function,
G0, travels with the correct velocity in a forward series where the perturbation is due to a change
in density properties only. Hence, the task of the forward series will be to construct the correct
amplitude of the wavefield and to leave the time unchanged.

In the following examples, based on the model in Fig. (4), the perturbation in equation (11) and
the reference wave field in equation (12) will be used.

3.1.1 Transmission Case

  0

z=a

Source

cρ
0

cρ
01

*

Receiver

Figure 5: Transmission case with constant velocity.

We start off by considering the transmitted wave field, i.e. the actual wave field calculated below
the interface at z = a.

We solve for the transmitted wave field whose source-receiver configuration is shown in Fig. (5).
Starting with the first order approximation in the Born series, equation (9), we have

G0V G0 =

∫ ∞

−∞
ρ0
eik|zg−z|

2ik

(
ω2βH(z − a)

ρ0c20

)
ρ0
eik|z−zs|

2ik
dz

+

∫ ∞

−∞
ρ0
eik|zg−z|

2ik

(
β

ρ0

∂

∂z
H(z − a) ∂

∂z

)
ρ0
eik|z−zs|

2ik
dz, (13)

= I1 + I2, (14)
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where,

I1 =
−1

4

∫ zg

a

β

ρ0
ρ0e

ik(zg−z)ρ0e
ik(z−zs) dz

− 1

4

∫ ∞

zg

β

ρ0
ρ0e

ik(z−zg)ρ0e
ik(z−zs) dz, (15)

and

I2 = − 1

4k2

∫ ∞

a

β

ρ0
sgn(zg − z)ikρ0e

ik|zg−z|ikρ0e
ik(z−zs) dz, (16)

I2 = − i
2

4

∫ zg

a

β

ρ0
ρ0e

ik(zg−z)ρ0e
ik(z−zs) dz

− i2

4

∫ ∞

zg

β

ρ0
(−1)ρ0e

ik(z−zg)ρ0e
ik(z−zs) dz. (17)

We can represent the terms in equation (15) and (17) with transmission-like and reflection-like
diagrams as shown in Fig.(6), and note that the transmission-like terms cancel out. Thus,

G0V G0 = I1 + I2 =
−β
2

∫ ∞

zg

ρ0e
2ikzeik(−zg−zs) dz,

G0V G0 =
β

2

ρ0e
ik(zg−zs)

2ik
. (18)

This result shows that the first order approximation to the Born series in this simple model generates
a wave which travels with the correct velocity c0 from the source at zs down to the receiver at zg

below the interface.

We have seen earlier that the isotropic part of the density perturbation has the exact same form
as the velocity perturbation. This means that considering only the isotropic part of the density
perturbation, the first order approximation to the Born series will try to correct the time of the
actual wave field as well as the amplitude. This is not correct in the constant velocity case. The
gradients in I2, have a directionality feature. This feature plays a major and important role for
how this particular forward series behaves. It is responsible for selecting the terms that contribute
to the amplitude prediction of the scattered wavefield and cancelling the terms, whose task are to
correct the arrival time.

The anisotropic part of the density perturbation (the one involving ∂
∂x

β(x)
ρ0

∂
∂x

) acts as the exact
negative of the time correction part of the isotropic density perturbation, i.e. the equations elim-
inate the integrals dependent on the depth difference (zg − a) at every order of approximation.
This is due to the signum function in equation (16) that derives from the gradient operation on
the reference wavefield. When the reference wavefield leaves the perturbation going downwards,
the sign function gives a −1 which eliminates the integrals where a < z < zg.

The depth difference factor, (zg − a), contained in the forward series was identified by Matson
(1996); Innanen and Weglein (2003) to be a part of a Taylor series of an exponential function that
corrects the arrival time of the predicted wave field to generate the actual scattered wave field. This
exponential was identified as a time corrector whose 1st order diagrammatic represention is shown
in Fig.(6)a. For the model we are considering, the action of the time correctors are not needed,
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(b) Reflection-like diagram

Figure 6: The Figure displays the diagrams representing the time and the amplitude correction parts of the
forward series in 1D: (a) Shows a time-corrector diagram. Downward propagation from source to
the scattering point z and to the receiver. (b) Shows an amplitude corrector diagram. Downward
propagation from source to the scattering point, z and upward propagation to the receiver.
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Figure 7: The density-only perturbation is a purposeful perturbation. The diagrams on the top are time
correctors; since their action is not needed in this example, the forward series cancels them out.

hence the anisotropic part of the density perturbation anihilates the time correction contributions.

The density-only perturbation exhibits the feature of a purposeful perturbation. Its only task is to
correct the amplitude of the predicted transmitted wave field order by order in the perturbation.
It does not allow the creation of time corrector diagrams because their action is not needed. So we
end up with the addition of amplitude correctors diagrams as shown in Fig.7.

Calculating the higher order terms of the Born series in equation (9) using the same approach as
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in equation (18), we obtain

G0 =
ρ0e

ik(zg−zs)

2ik

G0V G0 =
β

2

ρ0e
ik(zg−zs)

2ik

G0V G0V G0 =
β2

4

ρ0e
ik(zg−zs)

2ik

G0V G0V G0V G0 =
β3

8

ρ0e
ik(zg−zs)

2ik

G0V G0V G0V G0V G0 =
β4

16

ρ0e
ik(zg−zs)

2ik
.... (19)

From equation (19), we see that each term in the forward series has a common factor, G0, which
is the direct wave from the source to the receiver, travelling with the actual velocity. The terms in
the forward series differ only in the amplitudes. Summing all these terms gives us the Born series
representation of actual transmitted wavefield,

P = G0 +G0V G0 +G0V G0V G0 +G0V G0V G0V G0 + · · ·

P (zg > a|zs; k) =

(
1 +

β

2
+
β2

4
+
β3

8
+
β4

16
+ · · ·

)
ρ0e

ik(zg−zs)

2ik
. (20)

The forward series does its job given the tools at its disposal. The perturbation has the correct
information of the change in parameters, including the exact depth where the density changed and
the knowledge of the constant velocity throughout the whole medium. Each order of approximation
in the forward series provides the correct wave type, i.e. a transmitted wave with the correct arrival
time, G0. However, the amplitude of the transmitted wave is incorrect at each order, and it requires
an infinite number of terms to be corrected.

We have yet to establish the connection between the Born series representation of the actual wave
field and the analytical solution to the wave equation for the model in Fig. (4) given by

P (zg > a|zs; k) = T01
ρ0e

ik(zg−zs)

2ik
, (21)

where the transmission coefficient, T01, is

T01 =
2c1ρ1

c1ρ1 + c0ρ
=

2ρ1

ρ1 + ρ0
=

2ρ0

1−β
ρ0

1−β + ρ0
=

2

2− β =
1

1− β
2

.

Hence, the transmission coefficient can be represented as a geometrical series

1

1− β
2

= 1 +
β

2
+
β2

4
+
β3

8
+
β4

16
+ · · · . (22)

Comparing the geometrical series in equation (22) with the sum of terms in equation (20), we see
that the forward series predicts the correct transmitted wave field.
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3.1.2 Reflection Case

Now, we consider the case where we locate the receiver above the perturbation. Hence, we will
obtain a reflected wave field which has interacted with the perturbation and a direct wave which
has propagated directly from the source to the receiver without interacting with the perturbation.
In this case, the Green’s functions in the integrals in equation (9) propagating from the source to
the first scattering potential and the wave propagating from the last scatterer back to the receiver
will not have absolute values since zg < a and zs < a. Hence, calculating the forward series yields
the same amplitude coefficients as in equation (19). The difference is in the phase of the direct
wave compared to the scattered wave. The direct wave, G0, forms an event by itself; it has only
traveled in the reference medium and is therefore correct.

The reflection coefficient is formed from the scattered waves, the part of the wave that has interacted
with the perturbation. Hence, we have two events, the direct arrival plus the reflected wave

P (zg < z|zs; k) =
ρ0e

ik(zg−zs)

2ik
(23)

+

(
β

2
+
β2

4
+
β3

8
+
β4

16
+ · · ·

)
ρ0e

2ikaeik(−zg−zs)

2ik
. (24)

In order to compare the forward series solution of the wave equation with the analytical solution,
we expand the reflection coefficient in a Taylor series,

R01 =
c0ρ1 − c0ρ0

c0ρ1 + c0ρ0
=

ρ1 − ρ0

ρ1 + ρ0
=

ρ0
1−β

−ρ0

1−β
ρ0

1−β + ρ0
=

ρ0β

2ρ0 − ρ0β
=

β

2− β

=
β

2
+
β2

4
+
β3

8
+
β4

16
+ · · · . (25)

Comparing the Taylor series expansion of the reflection coefficient, R01, with the coefficient series
in front of the second term in equation (24), we find that the forward series predicts the actual
reflected wave field recorded above the perturbation.

3.2 Two parameters, both density and velocity changes

How will the forward series act when we allow the two acoustic parameters to change?

In this section we will study the model in Fig. (2) which involves the same 1D model structure
studied in the previous section, but now we will let both velocity and density change over the
interface. We will calculate the transmitted wave field below the interface.

We use the 1D version of the perturbation given in equation (5). In the case for a single interface
model, in a 1D medium, the perturbation in equation (5) can be written as

V =
ω2

ρ0c20
[αH(z − a) + βH(z − a) + αβH(z − a)] +

β

ρ0

∂

∂z
H(z − a) ∂

∂z
. (26)
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For mathematical convenience, we will introduce a new parameter, χ, defined as χ = α(1 − β).
Using this definitition together with k2 = ω2/c20 we obtain

V =
k2(β + χ)H(z − a)

ρ0
+
β

ρ0

∂

∂z
H(z − a) ∂

∂z
. (27)

The selection of these parameters is very important for an easier interpretation of each term and
its task in the forward series. If we had chosen to introduce the bulk modulus which involves both
the density and the velocity, the forward series could not be divided into task specific subseries. An
analogous choice of parameters, density and velocity, in the inverse scattering series for parameter
estimation has shown to be a convenient and transparent selection which eliminates the problem of
linear ”leaking” between linear property change predictions. The special parameters, density and
velocity, were identified in the inverse series by Zhang and Weglein (2005).

In the 2-parameters acoustic wave equation, velocity and density are independent of each other.
We found that velocity and density are the parameters that lead to a clear and transparent under-
standing of the different tasks performed by the forward series. The introduction of the parameter
χ is convenient, because χ contains the portion of the perturbation associated with velocity which
only acts as an isotropic part of the perturbation. Hence, χ represents an isotropic only part of
the two parameter acoustic perturbation. On the other hand, β appears in both parts (isotropic
and anisotropic) of the perturbation, and it is exactly the same perturbation as the one in the
density-only case as seen in equation (11). The fact that we can separate the density-only part
of the perturbation from the velocity dependent part, allows us to use the results, analysis and
conclusions we obtained in the previous sections to understand and make inferences about the
more general 2-parameter acoustic case currently studied. The first order approximation to the
transmitted field is easily calculated using equation (18),

G0V G0 = ρ0
eik(zg−zs)

2ik

(
χ

4
− 2ikχ(z − a)

4
+
β

2

)
. (28)

The parameterization that we chose allows us to infer that the forward series is going to decide
of whether the purpose of a given computation is overall necessary or not in the same clear way
as it did in the density-only perturbation case. Equation (28), gives a transmitted-type wave field
multiplied by the coefficient

(
χ

4
− 2ikχ(z − a)

4
+
β

2

)
. (29)

The first and third term in equation (29) have a similar form, while the second term is multiplied
by the depth difference between the position where the perturbation started (at the interface in
the model) and the scatterer. The isotropic part of the perturbation contains χ which in turn
contains the depth of the velocity change and the value of that change. It will be integrated with
a factor (z − a), which is dependent of depth. The depth difference is the best estimate of the
correct arrival time that the first order approximation of the forward series can make. The factor
(z−a) is the depth that the wave traveled in the medium whose velocity is not the background one.

The knowledge of this depth will create the correct time. The term 2ikχ(z−a)
4 in equation (29)is

the linear term in a Taylor series expansion for an exponential function which is responsible for
correcting the travel time of the reference wave towards the travel time of the actual wave field.
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Hence, the second term on the right hand side of equation (29) corresponds to the output of a time
corrector, while the first and third terms are amplitude correctors.

The second order approximation is given by

G0V G0V G0 =

∫ ∞

−∞

ρ0e
ik|zg−z|

2ik

(
ω2(χ+ β)H(z − a)

ρ0c(z)2
+
β

ρ0

∂

∂z
H(z − a) ∂

∂z

)

× ρ0
eik(z−zs)

2ik

(
χ

4
− 2ikχ(z − a)

4
+
β

2

)
dz

G0V G0V G0 =

∫ ∞

a

ρ0e
ik|zg−z|

−4
eikze−ikzs (χ+ β)

(
χ+ 2β

4
− 2ikχ(z − a)

4

)
dz

+

∫ ∞

a

ρ0e
ik|zg−z|

−4k2
eikze−ikzs (sgn(zg − z)ikβH(z − a))

×
(
ik

(
χ+ 2β

4
− 2ik(z − a)χ

4

)
− 2ik

χ

4

)
dz. (30)

Expanding the absolute values of the Green’s functions propagating from the source to a scatterer,
we obtain

G0V G0V G0 =

∫ zg

a

[
(χ+ β)

χ+ 2β − 2ikχ(z − a)
4

− β−χ+ 2β − 2ikχ(z − a)
4

]

× −ρ0e
ik(zg−zs)

4
dz

+

∫ ∞

zg

[
(χ+ β)

χ+ 2β − 2ikχ(z − a)
4

+ β
−χ+ 2β − 2ikχ(z − a)

4

]

× −ρ0

4
e2ikzeik(zg+zs) dz (31)

The integral in equation (31) where a < z < zg is the time corrector. The second integral cor-
responds to an amplitude corrector. In the first integral, the terms containing only β cancel out,
while all the terms containing the velocity perturbation χ give a contribution,

G0V G0V G0 =

[
χ2

8
+
βχ

4
+
β2

4
− 2ik

(
χ2

8
+

3βχ

8

)
(z − a) + (ik)2

χ2

8
(z − a)2

]

× ρ0

2ik
eik(zg−zs). (32)

The density-only part of the perturbation does not give any contribution to time correctors. From
equations (28) and (32) we see that all terms involving the density-only part of the perturbation,
β, multiplied by the time correction factor, or depth difference, (z − a), have vanished. This is
the same effect as seen in the density-only case studied in section (3.1.1) which showed that the
isotropic and anisotropic parts containing the time correctors cancel for each term in the series.
The only parts that survive, are the terms responsible for amplitude corrections and the nonlinear
terms coupled with the velocity term, χ, which are responsible of correcting the travel time and
amplitudes.

The higher order terms of the forward series are calculated in the same manner as shown for the
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first two terms. Summing all terms in the forward series yields

P (zg > a|zs; k) = (

[
χ

4
+
χ2

8
+
β

2
+
β2

4
+
β3

8
+
βχ

4

βχ2

8
+

3β2χ

16
+ · · ·

]

− 2ik(z − a)
[
χ

4
+
χ2

8
+

3χ3

32
+

3βχ

8
+

3βχ2

16
+

5β2χ

16
+ · · ·

]

− k2(z − a)2
[
χ2

8
+

3χ3

32
+

5χ2β

16
+

9χ4

128
+ · · ·

]

+ 2ik3

[
χ3

96
+
χ4

96
+

7χ3β

192
+ · · ·

]
)eik(zg−zs). (33)

The transmission coefficient for this model is,

T01 =
2c1ρ1

c1ρ1 + c0ρ
=

2

1 + (1− β)
√

(1− α)
,

using χ = −αβ + α, we find

α =
χ

1− β ,

γ =
k0

k1
=
√

1− α.

(34)

With these definitions, we perform a Taylor expansion of T01, α and γ, in terms of the parameters
χ and β, and compare them with the terms in equation (33), to obtain

P (zg > a|zs; k) =T01
ρ0

2ik
eik(zg−zs)(1− 2ik(1− γ)(z − a)− 1

2
4k2(1− γ)2(z − a)2

+
1

6
ik3(1− γ)3(z − a)3 + · · · )

P (zg > a|zs; k) =T01e
ik(zg−zs)e−ik(zg−a)(1−γ)

P (zg > a|zs; k) =T01e
ik1(zg−a) ρ0

2ik
ei(a−zs). (35)

Again, the forward series predicts the actual wavefield recorded at a received located inside the
perturbation.

4 Analysis

In the history of scattering series in exploration seismology, the study of the forward series has
created a framework to build analogies and symmetries with the inverse scattering series (Weglein
et al., 2003; Nita et al., 2004). However, the forward and the inverse series have very different
objectives; the forward series uses the reference wave field and a perturbation to build the actual
wave field, while the inverse series constructs the perturbation using the reference and the measured
values of the actual wave field. Hence, the forward and inverse are not inverse in the standard
mathematical sense, e.g. a matrix and its inverse. In other words, the forward series produces
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the wave field order by order in the perturbation, while the inverse series (and its task specific
suberies) does not annihilate the wave field, it uses order by order the measured values of the
actual wave field together with the reference wave field to predict the perturbation from the earth
that created it, the actual earth. The inverse scattering series currently provides a comprehensive
multidimensional method for inversion, that allows to achieve different objectives, e.g., free-surface
and internal multiple elimination, and depth structure maps and parameter estimation or non-linear
AVO, all achieved sequentially with distinct algorithms corresponding to task specific subseries.

In a series approach, like this, a reasonable question to ask is how many terms would be required in
practice to achieve an appropriate level of effectiveness towards the construction on the wave field
with the forward series or the specific task associated with the inverse scattering subseries (Weglein
et al., 1997, 2003). As we showed in the previous sections, the forward series takes a decision of
whether the purpose of a given computation is overall necessary or not. The forward series gives a
clear signal of this decision by not attempting to solve an issue that doesn’t exist. That decision
occurs at the first approximate step to address that specific issue. For the two parameter acoustic
case we have identified special parameters in such a way that we are able to divide the forward
scattering series into two task specific subseries, where one subseries is responsible for generating
the time of the actual wave field, and the other is responsible for generating the correct amplitudes.
When there is no velocity difference between the actual and the reference medium, the subseries
responsible for time corrections is non-existent. It does not merely add up to zero, but it is zero
from the start. The forward series tells us that it is not necessary to calculate this subseries. This is
an example of purposeful perturbation. In other words, if a time issue does not exist, the subseries
for correcting the time does not exist either and the first term in that subseries signals whether
there is or is no issue to be addressed.

The powerful concept of purposeful perturbation was developed in the context of inverse scatter-
ing task-specific subseries, where several examples can be found (Weglein et al., 2003). Among
the identified processes, purposeful perturbation occurs for the free-surface and internal multiple
elimination series. The free-surface multiple elimination series eliminates an order of free-surface
multiples with the corresponding term in the series; it has an understanding of the specific purpose
of each term within the overall task (Carvalho, 1992). As long as you have source and receivers
between a reflector and a free-surface, you will always have free-surface multiples, hence the free-
surface multiple elimination series will always have a contribution. It cannot be zero because your
data have all orders of multiples, the series will eliminate the free-surface multiples order by order
and it will know and reveal what has and has not been accomplished for a given number of terms
computed.

In an earth that only has a single reflector, the internal multiple attenuation algorithm(Araújo,
1994), as well as the elimination series and its leading order closed form algorithm, will be computed
as zero without the necessity of computing the three or more integrals involved. The intrinsic
knowledge of the algorithm will decide that a single reflector cannot create an internal multiple,
and it will stop its whole machinery. This a clear statement of purposeful perturbation. It agrees
with the fact that for this hypothetical case there is only one primary or one transmitted event and
no multiples can be created or eliminated.

What basically happens in each task-specific subseries is that specific non-linear interactions take
place between events in the data as a whole. The data times data communication allow free-surface
and internal multiple prediction or accurate depth imaging to take place without an accurate
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velocity model.

In the subseries for imaging at depth without an accurate velocity (Shaw, 2005; Liu et al., 2005b),
the first term is the current standard migration performed with a reference velocity. It places each
event exactly where that input reference velocity dictates. The second term in the inverse series,
has integral terms represented by the separate diagram and non-integral terms represented in the
diagrams by self interactions. The separate diagrams have the task of moving the incorrectly imaged
events resulting from the linear migration step towards their correct spatial location. There is a
non-linear dependence on the data, allowing non-linear interactions (e.g., multiplication) between
primary events from different reflectors. In these interactions, the primaries are enable to determine
the accuracy of the input velocity. If the reference velocity is not precise for one or more events, then
the troubled events will receive information via specific non-linear interacions with the shallower
events to help moving the deeper events towards their correct location. When the reference velocity
is consistent with the actual velocity, then there is no depth to correct and the first term in the
imaging series, represented by a separate diagram, will be zero. The first separated diagram
immediately and unambiguously judges the adequacy of the input velocity in an analogy with the
transmission-like forward series diagram that is zero when the reference velocity is equal to the
actual one.

The behavior of the imaging series has a clear symmetry with the 2-parameter acoustic forward
series. When the density is the only parameter changing across the interfaces, there is no time to
correct and there are no time corrector or transmission-like diagrams. Furthermore, at each step
in the forward series the decision is taken and returns an unambiguous zero for any time corrector
diagram, and there are no mixed diagrams allowed, only the amplitude diagrams are computed.
This is not the case when the velocity is allowed to change. If the reference velocity is inadequate,
an extra part of the perturbation is alive, and the time corrector diagrams are computed order
by order in the perturbation giving the possibility to have specific (time or amplitude) and mixed
diagrams.

Another important example of purposeful perturbation, that can be studied together with the
results of this paper is in the 2-parameter inversion subseries for primaries (Zhang and Weglein,
2005). The term containing

∫
(α1−β1) exists to correct depth imaging for incorrect input velocity,

but first determines whether its function is required by a conversation between all the primaries
about the adequacy of the velocity expressed through α1 − β1. When the reference velocity is
adequate, α1 − β1 will be computed as zero. When the velocity is determined to be inadequate,
the same term returns a value an sets the whole target identification subseries machinery to work.
Furthermore, in our analytic examples, we identified a special parametrization in terms of density
and velocity perturbations (β and χ) which helps us in interpreting the tasks of each term in the
forward series. The same parameters, density and velocity, have been used as “special parameters”
for inversion (Zhang and Weglein, 2005), showing that the common problem of linear ”leaking”
between linear property change predictions is addressed by an appropriate selection of parameters
in the series. Hence, it is important to note that the interpretation and transparency of the tasks
which each term in the forward series does is dependent of the choice of parameters used.
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5 Conclusions

The inverse scattering series is a mathematical formalism pursued to process and invert seismic
data; it is the only known method for multidimensional direct inversion. A critical concept in
the progress of the algorithms based on inverse scattering is the idea of task separation (Weglein
et al., 1997, 2003). Understanding the behavior of every term in the inverse series benefits the
task separation approach. Experience shows that two mappings are required, one associating
nonperturbative description of seismic events with their forward scattering series description and a
second relating the construction of events in the forward to their treatment in the inverse scattering
series (Nita et al., 2004).

In a multiparameter world, there are more issues in constructing and processing data. Modeling
data with the forward series is a mathematical exercise performed with the goal of creating a frame-
work for the processing of data with task specific inverse subseries. The theoretical analysis of the
1-parameter, acoustic, forward series performed originally by Matson (1996) gave a mathematical
validation to some of the ideas and concepts used and developed to deal with the inverse series and
its subseries (Weglein et al., 1981, 1997, 2003). The forward series is a formalism that creates the
actual wave field order by order in an infinite series in terms of G0 and V . Creating an issue (i.e.
propagation in constant velocity and density distribution) in the data through a forward series with
G0 and V has a suggestion of how that issue is addressed in the inverse sense in terms of G0 and
D, which affects directly the imaging and the parameter estimation series.

In this paper we introduced a mathematical description and an analysis of the 2-parameter acoustic
forward series. The main result comes from the analysis of a model where only the density was
allowed to change. The density only perturbation has two parts in this scattering description. The
first part behaves isotropically, its behavior is the same as the one for a model with constant density
and changes in velocity (Matson, 1996, 1997; Innanen and Weglein, 2003; Nita et al., 2004). The
second part behaves anisotropically; it has a directionality given by the gradients in its analytic
form. These gradients inside the anisotropic part of the perturbation care of the direction from
the source, or the last scatterer, and the direction going out from that source or scatterer. This
anisotropic behavior cancels out all the time corrector contributions by giving the exact negative of
the time corrector output of the isotropic part of the density perturbation. Leaving us with a double
contribution of the reflection like diagrams, which build the correct amplitude of the scattered wave
field, i.e. the transmission and reflection coefficients. When the velocity was allowed to change, the
time corrector diagrams are alive. The transparency of the task that each diagram has is closely
related with the chosen parameters defining the perturbation.
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Non-linear forward scattering series expressions for and relations between
reflected primary and transmitted direct wavefield events

Kristopher A. Innanen

Abstract

Forward scattering series approximations of two important types of measured wavefield event
(given a homogeneous acoustic reference media and an “actual medium” represented by a P-
wave velocity distribution with potentially strong spatial heterogeneity), are proposed. These
approximations, for reflected primary wavefields and transmitted direct wavefields, are express-
ible in series form given a 2D or 3D medium, and in either series or closed-form given a 1D
medium; in both series and closed-form they can be shown to be closely related through a quasi-
linear mathematical construction. The 1D closed forms are principally used in this paper to
provide a framework to analyze the behavior of the 2D/3D series forms; in all three dimensions
light is shed not only on this modelling framework but many of our prototype inverse scattering
series processing algorithms. Importantly, all of these subseries can be seen to act toward the
creation of, effectively, new transmission-only Green’s functions that are highly non-linear in
the perturbation. This remains true in 1D and in 2D/3D, however, the latter cannot (without
further restrictions) be collapsed to closed form.

1 Introduction

This paper concerns the construction of tools for understanding wave fields that propagate through
complex heterogeneous media before they are measured.

The forward scattering series is an infinite series representation of a Green’s function for wave
propagation in a given medium, in terms of (1) a Green’s function for wave propagation in a
reference medium, and (2) a perturbation that accounts for the difference between the two media.
Given a simple reference medium (in this paper, for instance, a homogeneous, acoustic, constant
density medium is utilized) and the perturbation as input, the forward scattering series labors to
compute the wavefield due to the original, “actual”, medium.

This formalism can therefore be regarded as a machine for forward modelling, although, to be sure,
an impractical one in the absence of further analysis and manipulation. Furthermore, the inverse
scattering series, a theory for the order-by-order construction of the perturbation directly in terms
of measured values of wavefield data, whose relevance to issues of reflection seismic imaging and
target identification has been discussed elsewhere (e.g., Weglein, 1981; Weglein et al., 1997; Weglein
et al., 2003), shares a high degree of symmetry with the forward series. As such, insight into the
behavior of one tends to afford equivalent insight into the other. The various motivations for the
developments described in this paper all have their roots in one or other of the above statements.

More specifically, this paper describes a program for manipulation of the forward scattering series
to isolate the construction of the primaries and direct waves of reflection- and transmission-type
source/receiver configurations. The wavefield signal returning from a reflection-type experiment
(and the wavefield signal arriving from a transmission-type experiment) involves characteristic
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echoes, or events, that are due to rapid spatial variations in the underlying (or intermediary)
medium parameters. Primaries in a reflection-type experiment are events due to wave energy that
has undergone no reverberation during its propagation down-and-back in the subsurface. Multiples
are events corresponding to wave energy that has experienced some degree of reverberation; in
a stratified medium multiples are events due to wave energy that has experienced at least one
downward reflection during its propagation history. This wave energy is relatively complicated to
describe in terms of medium parameters, and hence, in spite of recent and developing frameworks
for using multiples in imaging and inversion problems, effort typically is expended to eliminate
them from a recorded data-set, leaving primaries as the de facto signal. Weglein and Dragoset
(2005) have recently edited a literature overview, conceptual background, and basic discussion of
the categorization and processing of such events. Direct waves have slightly altered descriptions
for reflection- or transmission-type experiments: in a reflection-type experiment the direct wave is
that portion of the wavefield that has had no interaction with the subsurface structure, whereas
in a transmission-type experiment the direct wave has interacted with the medium structure of
interest but has not undergone any reverberative propagation. Direct waves of transmission-type
are information bearing with respect to the medium structure; for this reason I consider this latter
form only in what follows.

In the language of scattering theory, none of these events have an exact definition, so understanding
the construction of a specified event of reflection- or transmission-type in terms of the combination
of (1) a given reference medium, and (2) a subset of forward scattering series terms, is a matter for
analysis, intuition, and approximation. To cite a well-known example: given a reference medium
that is equal to the actual medium up to a specified (low) level of smoothness, such that the respon-
sibility of the perturbation is therefore to capture the rapid, transitory “reflectivity” of the medium,
the first-order term of the forward scattering series can be considered a useful approximation of the
primaries of a reflected wavefield. An accumulation of discrepancies between the smooth reference
medium and the smooth component of the actual medium contributes to an accumulation of error
in this approximation. In constructing primaries due to a scattering potential that is structurally
complex across many scales, with a highly simplified, perhaps homogeneous, reference medium,
generally one encounters large errors in the linear primaries approximation.

To construct any event in a wavefield using scattering theory, in principle the full infinite forward
scattering series is needed. Anything less than that is in some sense an approximation, and the
main question becomes one of assessing its accuracy, which may be very high. The onset of
inaccuracy in the aforementioned linear approximation of primaries simply implies that with the
given combination of reference medium and perturbation, higher-order terms in the series are
beginning to demand inclusion. And, unfortunately, that useful prescription for the accurate,
though approximate, construction of specific events (reflected primaries) with specific series terms
(the single linear term), is lost also, and is relegated to an a priori unknown set of mathematical
terms and activities within the entire series.

How the forward scattering series constructs seismic reflection events, in the absence of an accurate
reference medium, has been investigated by Matson (1996; 1997), Innanen and Weglein (2003),
Nita et al. (2004) and Ramirez and Otnes (2006) for sets of single-interface and/or single layer
Earth models that are depth-varying and piecewise constant. Innanen (2005) has posited two non-
linear expressions that approximate reflected primaries due to arbitrary depth-varying acoustic
media in both series and closed-form, given a homogeneous reference, and demonstrated that
this approximation may be directly inverted to create an algorithm for imaging and inversion of
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primaries. Numerical comparison of these non-linear wavefield constructions to analytically-derived
“perfect data” (using a restricted set of models for which analytic data may be written down)
clearly shows that the identified and separated sub-terms of the forward scattering series (1) work
to construct only reflected primaries, and (2) compute to a high degree of accuracy the phase and
amplitude of those events. One of the results of the current paper is a framework for the extension
of those essentially stratified-medium manipulations to media with perturbation structure that
varies in three dimensions.

In addition to allowing itself to be compartmentalized into components that construct the primary
part of the reflected wavefield and/or the direct part of the transmitted wavefield, this non-linear
series framework allows partial constructions of the former (reflected primary) to be expressed
in terms of partial constructions of the latter (transmitted direct) in a number of related ways.
This is an edifying result, in that it bridges the two developments; additionally, in speaking to the
constructibility of reflection data from transmission data, it bears resemblance, but in a modelling
sense, with the literature on interferometry and daylight imaging (Claerbout, 1968; Wapenaar, 2003;
Schuster et al., 2004). Away from the modelling framework, basic theory exists highlighting the
relationship between the inverse scattering series and the construction of the wavefield (transmitted
and otherwise) everywhere in a scattering medium directly in terms of reflection data measured
outside of the scattering medium (Weglein et al., 2006).

In the forthcoming development attention is restricted to scattering media in which a homogeneous,
acoustic, constant density reference medium is perturbed by an alteration to the wavespeed that
may vary in three dimensions. (The analysis is repeated thereafter for the simpler case of layered
medium perturbations.) In that milieu, expressions are first derived for the first three orders
of the forward scattering series three times: once with sources/receivers positioned to mimic a
reflection geometry, and twice with transmission geometries. These expressions illustrate the core
mathematical mechanisms associated with the generation of the full wavefields: primaries, direct
waves, multiples etc. The next step is to extend to multiple dimensions the idea of constraining the
reflection scattering integrals to approximate only primaries (Innanen, 2005). This turns out to be
a straightforward extension if the correct domains are chosen. In addition, a conceptually similar
set of constraints on the transmission scattering integrals are proposed as a means to approximate
the direct wavefields. The result is a set of the lowest three orders of three distinct series for event
approximation, one for reflected primaries and two for transmitted direct waves (“upward” and
“downward”); the patterns needed to write down the n’th order terms of each are clear after three
orders are explicitly given. In fact, those patterns may be used to postulate recursive forms for each
of these series. The next step is to demonstrate that two transmitted wavefield series terms (at,
say, n’th and m’th order) may be “stitched” together via a quasi-linear construction, to recreate
the series term for a part of the associated reflected wavefield at (m+ n+ 1)’th order. This whole
development is then repeated for a depth-varying (1D as opposed to 3D) perturbation, and it is
shown that, since closed- and series-forms are available in the 1D regime for each of the wavefield
event approximations, the transmitted and reflected approximations may be once again related via
a quasi-linear scattering construction, both order-by-order, and in total.
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2 Terminology

Wave equations appropriate for acoustic waves propagating through media with fixed density and
(sometimes) variable wavespeed are considered; a homogeneous reference medium with wavespeed
c0 has an associated Green’s function satisfying

[
∇2

g +
ω2

c20

]
G0(xg|xs;ω) = δ(xg − xs), (1)

where

xg = (xg, yg, zg),

xs = (xs, ys, zs);
(2)

a medium with a wavespeed varying in three dimensions is also considered, in which the appropriate
Green’s function satisfies

[
∇2

g +
ω2

c2(xg)

]
G(xg|xs;ω) = δ(xg − xs); (3)

here xg is the spatial location of the receiver, xs is the spatial location of the source, and ω is the
angular temporal frequency. Defining a perturbation on the reference medium wavespeed

α(x) = 1− c20
c2(x)

(4)

and substituting for c2(x) in equation 3, the two Green’s functions are combined to form the
Lippmann-Schwinger or scattering equation:

G(xg|xs;ω) = G0(xg|xs;ω) +

∫ ∞

−∞
dx′G0(xg|x′;ω)k2α(x′)G(x′|xs;ω). (5)

This gives rise, through back-substitution, to the representation of the Green’s function for the
variable medium in terms of the Green’s function for the homogeneous reference medium and the
perturbation α,

G(xg|xs;ω) = G0(xg|xs;ω) +G1(xg|xs;ω) +G2(xg|xs;ω) + ..., (6)

known as the forward scattering series or Born series. The individual terms of the series Gn can be
considered n’th order in α, the repository for medium information, and are, to give the first- and
second-order terms explicitly,

G1(xg|xs;ω) =

∫ ∞

−∞
dx′G0(xg|x′;ω)k2α(x′)G0(x

′|xs;ω), (7)

and

G2(xg|xs;ω) =

∫ ∞

−∞
dx′G0(xg|x′;ω)k2α(x′)

∫ ∞

−∞
dx′′G0(x

′|x′′;ω)k2α(x′′)G0(x
′′|xs;ω). (8)

Gn is the component of the wavefield that is mathematically equivalent to a field (1) interacting
n times with scatterers of size α, and (2) propagating directly between each scatterer through the
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reference medium via G0. In this domain the scatterers (e.g., α(x′) and α(x′′) at second order)
are separated in space from each other in all three coordinate directions (two lateral, x, y, and one
vertical, z) explicitly.

A preferential coordinate direction (depth, z) rates focused attention. In seismology this is because
depth is the coordinate along which no or few measurements are possible; in more general terms it is
sufficient to stipulate that the preferential axis be that which is perpendicular to the measurement
surface. The lateral directions, x and y, may be rendered implicit in the scattering interactions
with certain Fourier transforms. To accomplish these, the Fourier transform conventions

f(kxg , kyg) =

∫ ∞

−∞
dxg

∫ ∞

−∞
dyge

−ikxg xg−ikyg ygf(xg, yg),

f(xg, yg) =

(
1

2π

)2 ∫ ∞

−∞
dkxg

∫ ∞

−∞
dkyge

ikxg xg+ikyg ygf(kxg , kyg)

(9)

are followed for transformation of lateral receiver coordinates, and the opposite conventions,

f(kxs , kys) =

∫ ∞

−∞
dxs

∫ ∞

−∞
dyse

ikxsxs+ikysysf(xs, ys),

f(xs, ys) =

(
1

2π

)2 ∫ ∞

−∞
dkxs

∫ ∞

−∞
dkyse

−ikxsxs−ikysysf(kxs , kys),

(10)

are followed for lateral source coordinates. Certain combinations of angular frequency and lateral
wavenumbers are interpretable through their dispersion relations as being depth wavenumbers; a
sign is chosen for these and they are given the denotation q, e.g.,

qg ≡ sgn(ω)

[
ω2

c20
− k2

xg
− k2

yg

]1/2

,

qs ≡ sgn(ω)

[
ω2

c20
− k2

xs
− k2

ys

]1/2

,

qn ≡ sgn(ω)

[
ω2

c20
− k2

xn − k2
yn

]1/2

.

(11)

The wavefield event approximations will in later sections be expressed in the wavenumber domain
kxg , kyg , kxs , kys for the lateral coordinates, the angular frequency domain ω, and for fixed source
and receiver depths zg and zs. These latter depths are essentially parameters, changed, at most, to
be consistent with reflection or transmission experimental configurations. In the forward scattering
series terms in equations 7–8 (and at all higher orders) these choices for output domain will alter
the “leftmost” and “rightmost” reference Green’s functions; all interior Green’s functions remain
fully in the space domains. For homogeneous reference media the solutions are straightforwardly
expressible in wavenumber-space domains as:

G0(kxg , kyg , zg|x′, y′, z′;ω) = e−ikxg x′−ikyg y′ eiqg |zg−z′|

i2qg

G0(x
′, y′, z′|kxs , kys , zs;ω) = eikxsx′+ikysy′ eiqs|z′−zs|

i2qs
,

(12)
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and in the space domain as

G0(x
′, y′, z′|x′′, y′′, z′′;ω) =

(
1

2π

)2 ∫ ∞

−∞
dkx1

∫ ∞

−∞
dky1e

ikx1 (x′−x′′)eiky1 (y′−y′′) e
iq1|z′−z′′|

i2q1
. (13)

Expressing the elements of the scattering series terms in this way, especially in bilinear form as in
equation 13 above, will allow the depth coordinate z to be treated preferentially, and will allow
meaningful wavefield “events” to be categorized in terms of scattering geometries specific to the
depth axis.

I also use boldface as a convenience to describe multiple dimensionality in the wavenumber domain,
but importantly, these are lateral wavenumbers only, and hence are two-dimensional vectors:

kg = (kxg , kyg),

ks = (kxs , kys),

kn = (kxn , kyn),

(14)

etc. These will occur in dot products with lateral space vectors that also require further definition,

x̃g = (xg, yg),

x̃s = (xs, ys),

x̃n = (xn, yn),

(15)

but that in return render the expression of the interior and “leftmost” and “rightmost” Green’s
functions of any series term compactly and with distinct treatment of the depth variable z, viz.

G0(kg, zg|x′;ω) = e−ikg·ex′ eiqg |zg−z′|

i2qg
,

G0(x
′|ks, zs;ω) = eiks·ex′ eiqs|z′−zs|

i2qs
,

(16)

and

G0(x
′|x′′;ω) =

(
1

2π

)2 ∫ ∞

−∞
dk1e

ik1·(ex′−ex′′) e
iq1|z′−z′′|

i2q1
. (17)

3 Forward scattering series terms for reflected and transmitted wave fields

Here, after writing down general forward scattering series terms corresponding to three distinct
experimental geometries (upward transmitted, downward transmitted, and reflected), constraints
on the scattering integrals within each term of the forward scattering series are imposed based
on relative scattering geometries in the depth coordinate. These constraints lead to expressions
that isolate the construction of two kinds of meaningful seismic events: reflected primaries and
transmitted direct waves.
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3.1 Scattering series terms for a transmission-like geometry

In this section the source depth is fixed to be shallower than the receiver depth, and the depth
support of the scatterers α is restricted to lie between them. The resulting series terms Gn are
renamed TD

n to signify the n’th order term for the “downward transmitted” wavefield (schematically
illustrated for a perturbation varying in 2D in Figure 1). At first order this produces, first generally,

T1(kg, zg|ks, zs;ω) =

∫ ∞

−∞
dx′G0(kg, zg|x′;ω)k2α(x′)G0(x

′|ks, zs;ω), (18)

and following the source/receiver restrictions,

TD
1 (kg, zg|ks, zs;ω) = −1

4
eiqgzg−iqszs

k2

qgqs

∫ zg

zs

dz′e−i(qg−qs)z′α(kg − ks, z
′). (19)

Similarly, at second order,

T2(kg, zg|ks, zs;ω) =

∫ ∞

−∞
dx′G0(kg, zg|x′;ω)k2α(x′)

×
∫ ∞

−∞
dx′′G0(x

′|x′′;ω)k2α(x′′)G0(x
′′|ks, zs;ω),

(20)

and

TD
2 (kg, zg|ks, zs;ω) = − i

8
eiqgzg−iqszs

k4

qgqs

(
1

2π

)2 ∫ ∞

−∞

dk1

q1

×
∫ zg

zs

dz′
∫ zg

zs

dz′′e−iqgz′eiq1|z′−z′′|eiqsz′′

× α(kg − k1, z
′)α(k1 − ks, z

′′),

(21)

and at third order

TD
3 (kg, zg|ks, zs;ω) =

1

16
eiqgzg−iqszs

k6

qgqs

(
1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

dk1dk2

q1q2

×
∫ zg

zs

dz′
∫ zg

zs

dz′′
∫ zg

zs

dz′′′e−iqgz′eiq1|z′−z′′|eiq2|z′′−z′′′|eiqsz′′′

× α(kg − k1, z
′)α(k1 − k2, z

′′)α(k2 − ks, z
′′′).

(22)

(The alterations to the depth integral limits are permissible because of the chosen depth support
of α.) Stopping here, not because three orders are deemed to be sufficient to approximate the
actual wavefield (quite the opposite: in studies of the inverse scattering series, which involves
similar term by term behavior to the forward case, it has been pointed out in theory (Stolt and
Jacobs, 1981) and in numerical application (Shaw et al., 2004; Shaw, 2005; Innanen, 2003; Innanen
et al., 2006) that often many tens of terms are needed; this series in its most stripped down
form resembles a polynomial approximation of an exponential function), but because the patterns
arising in increasing order are reasonably clear, the source and receiver depths are next reversed,
to generate an “upward transmitted” configuration. Similarly to the downward case:

TU
1 (kg, zg|ks, zs;ω) = −1

4
e−iqgzg+iqszs

k2

qgqs

∫ zs

zg

dz′ei(qg−qs)z′α(kg − ks, z
′), (23)
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Figure 1: A conceptual depiction in 2D of the transmission-type source/receiver/scatterer configuration. At a fixed
depth zs a source plane wave with the frequency ω = kc0 (and characterized by any one of the lateral
wavenumber ks, the source angle θs, or the depth wavenumber qs) originates and propagates into the
scattering region, interacts, and a receiver plane wave with the same frequency (and characterized by any
one of kg, θg, or qg) returns to the fixed receiver depth zg. In these notes particular use is made of
the depth wavenumber. In the n’th order portion of the wave field there arises an ordered set of depth
wavenumbers, and it is convenient to express the source depth wavenumber as the n’th in that set, and
the receiver depth wavenumber as the zero’th in that set.
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TU
2 (kg, zg|ks, zs;ω) = − i

8
e−iqgzg+iqszs

k4

qgqs

(
1

2π

)2 ∫ ∞

−∞

dk1

q1

×
∫ zs

zg

dz′
∫ zs

zg

dz′′eiqgz′eiq1|z′−z′′|e−iqsz′′

× α(kg − k1, z
′)α(k1 − ks, z

′′),

(24)

and

TU
3 (kg, zg|ks, zs;ω) =

1

16
e−iqgzg+iqszs

k6

qgqs

(
1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

dk1dk2

q1q2

×
∫ zs

zg

dz′
∫ zs

zg

dz′′
∫ zs

zg

dz′′′eiqgz′eiq1|z′−z′′|eiq2|z′′−z′′′|e−iqsz′′′

× α(kg − k1, z
′)α(k1 − k2, z

′′)α(k2 − ks, z
′′′).

(25)

The series
∑
TD

n and
∑
TU

n , when convergent, create all relevant components of a transmitted
wavefield (upward or downward as the case may be). This must include portions of the solution
that correspond to any “event”, however it is defined or otherwise recognized. In transmitted
wavefields these events include the direct wave, and multiples, events corresponding to energy that
has reverberated, in the depth coordinate, within the scattering portion of the medium.

3.2 Scattering series terms for a reflection-like geometry

If the source and receiver depths are fixed to both exist at depths less than the depth-support of
the scattering medium α, the resulting expressions will be consistent with a reflection experiment
and geometry (schematically illustrated for a perturbation varying in 2D in Figure 2). Fixing them
as such and renaming the series terms Rn, again to third order the expressions

R1(kg, zg|ks, zs;ω) =

∫ ∞

−∞
dx′G0(kg, zg|x′;ω)k2α(x′)G0(x

′|ks, zs;ω), (26)

R1(kg, zg|ks, zs;ω) = −1

4
e−iqgzg−iqszs

k2

qgqs

∫ ∞

−∞
dz′ei(qg+qs)z′α(kg − ks, z

′), (27)

and

R2(kg, zg|ks, zs;ω) =

∫ ∞

−∞
dx′G0(kg, zg|x′;ω)k2α(x′)

×
∫ ∞

−∞
dx′′G0(x

′|x′′;ω)k2α(x′′)G0(x
′′|ks, zs;ω),

(28)

R2(kg, zg|ks, zs;ω) = − i
8
e−iqgzg−iqszs

k4

qgqs

(
1

2π

)2 ∫ ∞

−∞

dk1

q1

×
∫ ∞

−∞
dz′
∫ ∞

−∞
dz′′eiqgz′eiq1|z′−z′′|eiqsz′′

× α(kg − k1, z
′)α(k1 − ks, z

′′),

(29)
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Figure 2: A conceptual depiction in 2D of the reflection-type source/receiver/scatterer configuration. At a fixed
depth zs a source plane wave with the frequency ω = kc0 (and characterized by any one of the lateral
wavenumber ks, the source angle θs, or the depth wavenumber qs) originates and propagates into the
scattering region, interacts, and a receiver plane wave with the same frequency (and characterized by any
one of kg, θg, or qg) returns to the fixed receiver depth zg. In these notes particular use is made of
the depth wavenumber. In the n’th order portion of the wave field there arises an ordered set of depth
wavenumbers, and it is convenient to express the source depth wavenumber as the n’th in that set, and
the receiver depth wavenumber as the zero’th in that set.

and finally

R3(kg, zg|ks, zs;ω) =
1

16
e−iqgzg−iqszs

k6

qgqs

(
1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

dk1dk2

q1q2

×
∫ ∞

−∞
dz′
∫ ∞

−∞
dz′′

∫ ∞

−∞
dz′′′eiqgz′eiq1|z′−z′′|eiq2|z′′−z′′′|eiqsz′′′

× α(kg − k1, z
′)α(k1 − k2, z

′′)α(k2 − ks, z
′′′),

(30)

are produced. As in the case of the transmitted geometries, a convergent series
∑
Rn must pro-

duce all expected reflected wavefield events, including energy that has, within some reasonable
standard for categorization, propagated “down-and-back” once only, forming a set of events known
as primaries, and energy that has reverberated in the depth coordinate (forming multiples).

4 Approximations of the transmitted-direct and reflected-primary wave fields

In a potentially complicated multidimensional medium, concepts of “direct” and “primary” wave-
field events, in regular use in exploration seismology, have the tendency to lose the straightforward
meaning available to them in, say, a stratified medium. This is especially true when their descrip-
tion is to be in terms of scattering, in which even core concepts such as “reflection” are not elements
but only results of the theory.

Nevertheless distinctions with respect to the categorization of an event as a primary or a multiple
(i.e., a reverberation) are at the heart of processing methods based on the inverse scattering series
(Weglein et al., 1997; Weglein et al., 2003), and specific methodologies have required a standard
for determining whether or not a series term or part thereof is geared towards action on a primary
only (e.g., Weglein et al., 2002; Shaw et al., 2004; Innanen, 2003; Liu et al., 2005; Zhang and
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Weglein, 2005). The intuition leading to such standards has been aided by a study of the creation
of primaries with the forward scattering series. The developments of Matson (1996) and others
have guided the inverse approaches by suggesting which series terms act to create which wavefield
events. More recently, a more general set of expressions, for the reflected primaries associated with
an arbitrary layered acoustic medium, have been proposed. Partitioning of the forward scattering
series based on relative geometry of scattering interactions gives rise to these expressions for the
primaries, and the primaries only, of the reflected wavefield over a layered perturbation. Analysis
and numerics of the layered case provide evidence that a certain brand of series partitioning does
indeed produce accurate approximations of the phase and amplitude of such primaries (Innanen,
2005). Those encouraging results for layered media have been built upon here.

The complexities involved in extension of these series methods beyond 1D are not trivial (as Liu
et al. (2005) have certainly shown for the direct imaging problem). In the layered case, depth
is the coordinate along which the “relative geometry of scattering interactions” is determined;
enumeration of the overall number of direction changes along this axis forming the main criterion.
One of the main contributions of this paper is to advocate as full a retention of that approach as
the multidimensional case will allow. It turns out that a lateral wavenumber representation permits
the continued use of this criterion without any serious conceptual changes. The generalization then
still amounts to a retention of terms with suitable scattering geometries in depth, but now as part
of an integral over plane wave components.

4.1 Constraining the scattering integrals to approximate the direct component
of the transmitted wave field

Equations 20–22 are to third order terms expressing a transmission-like wavefield through a het-
erogeneous perturbation that is assumed to lie between the source and receiver. The aim in this
paper is to extract only that component of the full solution that corresponds to the direct wave,
i.e., a single event that has propagated directly through the intermediate structure, suffering no
reverberation.

This is accomplished through the retention of terms with suitable scattering geometry. The scatter-
ing integrals have been manipulated such that depth z is the only explicit space variable remaining
whose geometry may be considered. Extracting these depth integrals from their corresponding
wavefield series terms, we have

ID1 =

∫ zg

zs

dz′e−iqgz′α(kg − ks, z
′)eiqsz′

ID2 =

∫ zg

zs

dz′e−iqgz′α(kg − k1, z
′)

∫ zg

zs

dz′′eiq1|z′−z′′|α(k1 − ks, z
′′)eiqsz′′

ID3 =

∫ zg

zs

dz′e−iqgz′α(kg − k1, z
′)

∫ zg

zs

dz′′eiq1|z′−z′′|α(k1 − k2, z
′′)

×
∫ zg

zs

dz′′′eiq1|z′′−z′′′|α(k2 − ks, z
′′′)eiqsz′′′ ,

(31)

etc. Clearly the nature of these expressions will change depending on the relative magnitudes of
the depths of the contributing scattering interactions z ′, z′′, z′′′, etc.; Figure 3 illustrates the four
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Figure 3: Four diagrams illustrating the four contributions to the third-order transmission-like scattering integral.
All but the first scattering contribution have geometries consistent with reverberation, i.e., transmitted
multiples, and so are neglected in an approximation of the direct wave. The remaining contribution
involves no “turn-around” point.

permutations of third-order scattering interactions in depth. Some of the series terms at third
order appear to correspond to reverberative paths of wave energy. This correspondence is used
to constrain the integrals, the hypothesis being that eliminating contributions from this reverber-
ative diagram-type will mean eliminating the creation of reverberative events. It is important to
emphasize that the retention/rejection of scattering contributions at only a given order, say third
order, will only eliminate the third order component of a multiple, which is itself at best only
a poor approximation of the actual event; a large number of terms, at each order invoking such
constraints, are necessary for the scheme to bear fruit. This is a comment that is conceptually very
much aligned with the introductory descriptions in this paper, but it now appears to have produced
a contradiction: if this third-order contribution, in spite of its diagrammatical resemblance to a
reverberative event, is itself dissimilar to the actual multiple event in the wavefield solution, what
reason is there to think that it has any role, let alone a key role, in the construction of the actual
event we wish to suppress in a primary or direct wave approximation? The answer lies in the
pathology of the forward scattering series, which is to use the lowest-order, or most primitive event
approximations, as seeding points about which to expand the actual event in series. For instance, a
multiple that has a single downward reflection, or one that reverberates once only, has its first and
most primitive approximation appear at third order (e.g., Matson, 1996). At subsequent orders
(and, in fact, represented by similar diagrams) are contributions to a correction of this linear event
approximation. In general, the n’th order term in the forward scattering series involves contri-
butions that are: first-order approximations of an event that has undergone n actual reflections,
second-order approximations of an event that has undergone n − 1 actual reflections, third-order
approximations of an event that has undergone n−2 actual reflections, etc., and, finally, n’th order
approximations of an event that has undergone a single actual reflection (viz., a primary). In other
words, even at low order such geometrical (or diagrammatical) analysis of scattering interactions
can reveal to what event any term is making its largest contribution. The subsequent rejection
of “reverberating” seeding points is justifiably deemed to result in the rejection of reverberating
components of the full solution. Doing so for the first three orders results in a new set of scattering
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integrals that correspond to the zeroing of reverberative series contributions (see Figure 1):

IDD1 =

∫ zg

zs

dz′ei(qs−qg)z′α(kg − ks, z
′)

IDD2 =

∫ zg

zs

dz′ei(q1−qg)z′α(kg − k1, z
′)

∫ z′

zs

dz′′ei(qs−q1)z′′α(k1 − ks, z
′′)

IDD3 =

∫ zg

zs

dz′ei(q1−qg)z′α(kg − k1, z
′)

∫ z′

zs

dz′′ei(q2−q1)z′′α(k1 − k2, z
′′)

×
∫ z′′

zs

dz′′′ei(qs−q2)z′′′α(k2 − ks, z
′′′).

(32)

Substituting these back into the expressions for the transmitted wavefield results in order-by-order
expressions for the “downward” transmitted direct wave:

TDD
1 (kg, zg|ks, zs;ω) = −1

4
eiqgzg−iqszs

k2

qgqs

×
∫ zg

zs

dz′ei(qs−qg)z′α(kg − ks, z
′),

(33)

TDD
2 (kg, zg|ks, zs;ω) = − i

8
eiqgzg−iqszs

k4

qgqs

(
1

2π

)2 ∫ ∞

−∞

dk1

q1

×
∫ zg

zs

dz′ei(q1−qg)z′α(kg − k1, z
′)

×
∫ z′

zs

dz′′ei(qs−q1)z′′α(k1 − ks, z
′′),

(34)

TDD
3 (kg, zg|ks, zs;ω) =

1

16
eiqgzg−iqszs

k6

qgqs

(
1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

dk1dk2

q1q2

×
∫ zg

zs

dz′ei(q1−qg)z′α(kg − k1, z
′)

×
∫ z′

zs

dz′′ei(q2−q1)z′′α(k1 − k2, z
′′)

×
∫ z′′

zs

dz′′′ei(qs−q2)z′′′α(k2 − ks, z
′′′),

(35)

etc. Repeating this process with the “upward” transmitted wavefield, through construction and re-
substitutions of similar (but “upward” propagating) scattering integral components IDUn, results
in

TDU
1 (kg, zg|ks, zs;ω) = −1

4
e−iqgzg+iqszs

k2

qgqs

×
∫ zs

zg

dz′ei(qg−qs)z′α(kg − ks, z
′),

(36)
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TDU
2 (kg, zg|ks, zs;ω) = − i

8
e−iqgzg+iqszs

k4

qgqs

(
1

2π

)2 ∫ ∞

−∞

dk1

q1

×
∫ zs

zg

dz′ei(qg−q1)z′α(kg − k1, z
′)

×
∫ zs

z′
dz′′ei(q1−qs)z′′α(k1 − ks, z

′′),

(37)

and

TDU
3 (kg, zg|ks, zs;ω) =

1

16
e−iqgzg+iqszs

k6

qgqs

(
1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

dk1dk2

q1q2

×
∫ zs

zg

dz′ei(qg−q1)z′α(kg − k1, z
′)

×
∫ zs

z′
dz′′ei(q1−q2)z′′α(k1 − k2, z

′′)

×
∫ zs

z′′
dz′′′ei(q2−qs)z′′′α(k2 − ks, z

′′′),

(38)

etc. Summing
∑

n T
DD
n and

∑
n T

DU
n are postulated to form approximations of these wavefield

components.

4.2 Constraining the scattering integrals to approximate the primary compo-
nent of the reflected wave field

As with the transmitted case, the reflected primary components of the full reflected wavefield series
expressions are isolated by a retention/rejection programme on the scattering integrals. In the case
of the reflected primaries, only the terms for which the linear (single scattering) term is a seed point
about which to expand in series are retained. Figure 4 illustrates the three, of four, third-order
terms for which this is the case. Retention of only this type of term produces a subseries that, like
the transmission case, follows straightforward mathematical patterns; in fact, the terms seeding the
construction of multiples are responsible for the greatest mathematical complexities encountered
in this three-dimensional single parameter acoustic framework. The raw scattering integrals,

IR1 =

∫ ∞

−∞
dz′ei(qg+qs)z′α(kg − ks, z

′)

IR2 =

∫ ∞

−∞
dz′eiqgz′α(kg − k1, z

′)

∫ ∞

−∞
dz′′eiq1|z′−z′′|α(k1 − ks, z

′′)eiqsz′′

IR3 =

∫ ∞

−∞
dz′eiqgz′α(kg − k1, z

′)

∫ ∞

−∞
dz′′eiq1|z′−z′′|α(k1 − k2, z

′′)

×
∫ ∞

−∞
dz′′′eiq2|z′′−z′′′|α(k2 − ks, z

′′′)eiqsz′′′ ,

(39)

are manipulated and replaced with portions thereof. In the reflected primary case, the linear term
produces the seeds for all primaries, and, in fact, approximates them all (albeit poorly). The task
of all subsequent retained terms is to correct the phase and amplitude errors of these proto-events.
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Figure 4: Four diagrams illustrating the four contributions to the third-order scattering integral. In modelling pri-
maries, the second scattering contribution, whose geometry is “multiple-like” (and all such contributions
at higher order) are neglected. The remaining contributions involve a single “turn-around” point; in each
case (at third order) the other two scattering interactions are transmission like and involve no change in
propagation direction.

This retention/rejection scheme when applied to first and second-orders suggests the replacement
of IR1 and IR2 with partial integrals IRP1 and IRP2 respectively, where

IRP1 =

∫ ∞

−∞
dz′ei(qg+qs)z′α(kg − ks, z

′), (40)

and

IRP2 =

∫ ∞

−∞
dz′ei(qg+q1)z′α(kg − k1, z

′)

∫ z′

−∞
dz′′ei(qs−q1)z′′α(k1 − ks, z

′′)

+

∫ ∞

−∞
dz′ei(qg−q1)z′α(kg − k1, z

′)

∫ ∞

z′
dz′′ei(q1+qs)z′′α(k1 − ks, z

′′).

(41)

The same scheme at third-order requires three contributions such that IR3 may be replaced with
IRP3:

IRP3 = IRP31 + IRP32 + IRP33, (42)

where

IRP31 =

∫ ∞

−∞
dz′ei(qg+q1)z′α(kg − k1, z

′)

∫ z′

−∞
dz′′ei(q2−q1)z′′α(k1 − k2, z

′′)

×
∫ z′′

−∞
dz′′′ei(qs−q2)z′′α(k2 − ks, z

′′′),

(43)

IRP32 =

∫ ∞

−∞
dz′ei(qg−q1)z′α(kg − k1, z

′)

∫ ∞

z′
dz′′ei(q1+q2)z′′α(k1 − k2, z

′′)

×
∫ z′′

−∞
dz′′′ei(qs−q2)z′′α(k2 − ks, z

′′′),

(44)

and

IRP33 =

∫ ∞

−∞
dz′ei(qg−q1)z′α(kg − k1, z

′)

∫ ∞

z′
dz′′ei(q1−q2)z′′α(k1 − k2, z

′′)

×
∫ ∞

z′′
dz′′′ei(q2+qs)z′′α(k2 − ks, z

′′′).

(45)
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Substituting these portions of the scattering integral back into the full expressions for the reflected
wavefield series terms is suggested as contributing to an order-by-order primary approximation
with terms RP

n , where at the first order

RP
1 (kg, zg|ks, zs;ω) = −1

4
e−iqgzg−iqszs

k2

qgqs

∫ ∞

−∞
dz′ei(qg+qs)z′α(kg − ks, z

′), (46)

at second order
RP

2 = RP
21 +RP

22, (47)

where

RP
21(kg, zg|ks, zs;ω) = − i

8
e−iqgzg−iqszs

k4

qgqs

(
1

2π

)2 ∫ ∞

−∞

dk1

q1

×
∫ ∞

−∞
dz′ei(qg+q1)z′α(kg − k1, z

′)

×
∫ z′

−∞
dz′′ei(qs−q1)z′′α(k1 − ks, z

′′),

(48)

and

RP
22(kg, zg|ks, zs;ω) = − i

8
e−iqgzg−iqszs

k4

qgqs

(
1

2π

)2 ∫ ∞

−∞

dk1

q1

×
∫ ∞

−∞
dz′ei(qg−q1)z′α(kg − k1, z

′)

×
∫ ∞

z′
dz′′ei(q1+qs)z′′α(k1 − ks, z

′′);

(49)

meanwhile at third order
RP

3 = RP
31 +RP

32 +RP
33, (50)

where

RP
31(kg, zg|ks, zs;ω) =

1

16
e−iqgzg−iqszs

k6

qgqs

(
1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

dk1dk2

q1q2

×
∫ ∞

−∞
dz′ei(qg+q1)z′α(kg − k1, z

′)

×
∫ z′

−∞
dz′′ei(q2−q1)z′′α(k1 − k2, z

′′)

×
∫ z′′

−∞
dz′′′ei(qs−q2)z′′α(k2 − ks, z

′′′),

(51)
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and

RP
32(kg, zg|ks, zs;ω) =

1

16
e−iqgzg−iqszs

k6

qgqs

(
1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

dk1dk2

q1q2

×
∫ ∞

−∞
dz′ei(qg−q1)z′α(kg − k1, z

′)

×
∫ ∞

z′
dz′′ei(q1+q2)z′′α(k1 − k2, z

′′)

×
∫ z′′

−∞
dz′′′ei(qs−q2)z′′α(k2 − ks, z

′′′),

(52)

and finally

RP
33(kg, zg|ks, zs;ω) =

1

16
e−iqgzg−iqszs

k6

qgqs

(
1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

dk1dk2

q1q2

×
∫ ∞

−∞
dz′ei(qg−q1)z′α(kg − k1, z

′)

×
∫ ∞

z′
dz′′ei(q1−q2)z′′α(k1 − k2, z

′′)

×
∫ ∞

z′′
dz′′′ei(q2+qs)z′′α(k2 − ks, z

′′′)

(53)

are the three term portions given explicitly. To summarize, through what is essentially an ansatz
regarding the chief mechanisms of construction of primaries and direct waves in reflected and
transmitted configurations respectively in scattering theory, prescriptions have been presented for
media describable as variations in P-wave velocity on a homogeneous background, or reference,
medium for both these types of wavefield event. The remainder of the development in this paper is
largely variations on this theme, such that, for instance, these approximations may be more readily
computed and/or understood analytically.

4.3 Recursive forms

In the last part of this paper I will demonstrate the cumulative activity of an (effectively) infinite
number of such series terms when the medium varies in the depth coordinate only. Unfortunately
such summed closed-forms do not appear to be readily derivable for media that vary in two or
three dimensions, a fact which, in practice, means a greater computational burden in using these
expressions. However, although closed-forms are not available, recursive forms are. In other words,
although it may be necessary to calculate the n’th term in the series derived above, the n’th term
can be written as a relatively simple operation on the n − 1’th term, potentially a significant
lightening of the computational burden.

I will demonstrate with the downward transmitted direct wavefield. The upward transmitted
direct wavefield follows immediately, and, as I will demonstrate in the next section, order-by-order
relations can be derived between these two sets of transmitted direct wavefield series terms and the
reflected primary series terms. So to have this one quantity is to have all three. An appeal, then,
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is made to portions of equations 33–35 (omitting momentarily pre-factors common to each term),
re-written with the “source” index s set to n and the “receiver” index g set to 0:

T̃DD
1 (k0, zg|k1, zs;ω) =

ik2

2

1

q1

∫ zg

zs

dz′ei(q1−q0)z′α(k0 − k1, z
′), (54)

T̃DD
2 (k0, zg|k2, zs;ω) =

(
ik2

2

)2
1

q2

∫ zg

zs

dz′
(

1

2π

)2 ∫ ∞

−∞

dk1

q1
ei(q1−q0)z′α(k0 − k1, z

′)

×
∫ z′

zs

dz′′ei(q2−q1)z′′α(k1 − k2, z
′′),

(55)

T̃DD
3 (k0, zg|k3, zs;ω) =

(
ik2

2

)3
1

q3

∫ zg

zs

dz′
(

1

2π

)2 ∫ ∞

−∞

dk1

q1
ei(q1−q0)z′α(k0 − k1, z

′)

×
∫ z′

zs

dz′′
(

1

2π

)2 ∫ ∞

−∞

dk2

q2
ei(q2−q1)z′′α(k1 − k2, z

′′)

×
∫ z′′

zs

dz′′′ei(q3−q2)z′′′α(k2 − k3, z
′′′).

(56)

In these forms the patterns underlying a recursion are visible. In fact it is true that:

T̃DD
2 (k0, zg|k2, zs;ω) =

ik2

8π2

∫ zg

zs

dz′
∫ ∞

−∞

dk1

q1
ei(q1−q0)z′α(k0 − k1, z

′)T̃DD
1 (k1, z

′|k2, zs;ω),

T̃DD
3 (k0, zg|k3, zs;ω) =

ik2

8π2

∫ zg

zs

dz′
∫ ∞

−∞

dk1

q1
ei(q1−q0)z′α(k0 − k1, z

′)T̃DD
2 (k1, z

′|k3, zs;ω),

(57)

etc., or, more generally,

T̃DD
n (k0, zg|kn, zs;ω) =

ik2

8π2

∫ zg

zs

dz′
∫ ∞

−∞

dk1

q1
ei(q1−q0)z′α(k0 − k1, z

′)T̃DD
n−1(k1, z

′|kn, zs;ω). (58)

Summing these together and recalling that the largest-indexed lateral wavenumber is interpreted
as a source lateral wavenumber ks, and the smallest-indexed lateral wavenumber is interpreted as
the receiver lateral wavenumber kg, results in:

TDD(kg, zg|ks, zs;ω) = −e
iqgzg−iqszs

i2qg

∞∑

i=1

T̃DD
i (kg, zg|ki, zs;ω), (59)

which, with equation 58 and the stopping criterion

T̃DD
0 (k1, z

′|k1, zs;ω) =

(
1

2π

)−2

δ(k1 − ks), (60)

is a recursive prescription for computing this transmitted wavefield through a perturbation that
varies in three dimensions.
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5 Relations between transmitted-direct and reflected-primary wave field series
terms

The expressions developed in previous sections for transmitted-direct wavefields and reflected-
primary wavefields, some specifically suited for computation and some less so, are approximations
that required a scattering-theoretic definition of primaries and direct waves to be chosen. For
instance, the reflected primary approximation is the cumulative effect of all scattering interactions
in which there is a single direction change in the (potentially legion) scattering interactions within
a term. This ansatz, in fact, underlies (although in a processing/inversion, not modelling, sense)
all developing algorithms for direct non-linear reflector location (e.g., Weglein et al., 2002; Shaw
et al., 2004; Shaw, 2005; Liu et al., 2004; Liu et al., 2005; Innanen et al., 2004; Innanen et al.,
2006). Part of the value of a focused study of the forward series construction of events is that
it tells us precisely what subsequent primary-processing (imaging and inversion) algorithms think
these events are. In this section and in the next (in which the same expressions are reduced to
1D medium variation), I discuss implications along these lines. In this section it is shown, for
instance, that the scattering-based primary approximation posited here and by Innanen (2005) –
and the one underlying the above-referenced imaging prototype algorithms – sees a primary as a
“stitching together” of transmitted-direct wavefields whose propagation is non-linearly related to
the perturbation.

The diagrams describing ascending orders of transmitted direct-wavefield approximation (Figure 3),
and the diagrams describing ascending orders of reflected primary wavefield approximation (Figure
4), suggest a straightforward theme for relating these quantities. Viz., the reflected primary term
of fifth order, say, in which there is a single transmission-like scattering interaction on the “down”
leg, a single scattering interaction in which the direction of propagation changes (by the definition
of the primary approximation scheme), and three transmission-like scattering interactions on the
“up” leg, might be posited to be representable as a quasi-linear construction involving a first
order “downward” transmitted series term and a third-order “upward” transmitted series term. In
pseudo-mathematics, this R5 component would be related to T3k

2αT1. This equivalence turns out
to be precisely the case; I demonstrate with third-order terms of the series for the three wavefield
types. The demonstration is illustrated in Figure 5. The only extra complexity is that, since the
transmitted direct wavefields have so far been expressed in the kg, ks, ω domains, to include them
within a quasi-linear construction will require several inverse Fourier transforms. First, consider
the zero’th order upward transmitted direct wavefield and the second order downward (the former
being the simple homogeneous Green’s function, the latter having been derived in section 3.1):

TDU
0 (kg, zg|x′;ω) = G0(kg, zg|x′;ω)

= e−ikg·ex′ eiqg(z′−zg)

i2qg
,

(61)
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Figure 5: Illustration of the relationships between transmitted-direct and reflected-primary wavefield expressions
order-by-order. A quasi-linear construction involving the n’th order downward transmitted wavefield term
and the m’th order upward transmitted term produces one of the contributing terms to the m + n + 1’th
reflected primary term. Illustrations (a)–(c) conceptually demonstrate this construction for the three
components of the third-order reflected primary expression.
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and

TDD
2 (x′|ks, zs;ω) =

(
1

2π

)2 ∫ ∞

−∞
dk′

ge
ik′

g·ex′

TDD
2 (k′

g, z
′|ks, zs;ω)

=
i

8
e−iqszs

k4

qs

(
1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

dk′
gdk

′
1

q′gq1
eik

′
g·ex′

eiq
′
gz′

×
∫ z′

zs

dz′′ei(q1−qg)z′′α(kg − k1, z
′′)

×
∫ z′′

zs

dz′′′ei(qs−q1)z′′′α(k1 − ks, z
′′′).

(62)

Conjoining these two quantities in the proposed quasi-linear construction results in
∫ ∞

−∞
dx′TDU

0 (kg, zg|x′;ω)k2α(x′)TDD
2 (x′|ks, zs;ω)

=
1

16
e−iqgzg−iqszs

k6

qgqs

(
1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

dk1dk2

q1q2

×
∫ ∞

−∞
dz′ei(qg+q1)z′α(kg − k1, z

′)

×
∫ z′

−∞
dz′′ei(q2−q1)z′′α(k1 − k2, z

′′)

×
∫ z′′

−∞
dz′′′ei(qs−q2)z′′α(k2 − ks, z

′′′).

(63)

Notice that this is exactly equivalent to the third-order component RP
31 of the reflected primary

approximation in equation 51. In other words,

RP
31(kg, zg|ks, zs;ω) =

∫ ∞

−∞
dx′TDU

0 (kg, zg|x′;ω)k2α(x′)TDD
2 (x′|ks, zs;ω). (64)

Using similar manipulations it may be similarly shown that, indeed,

RP
32(kg, zg|ks, zs;ω) =

∫ ∞

−∞
dx′TDU

1 (kg, zg|x′;ω)k2α(x′)TDD
1 (x′|ks, zs;ω), (65)

and

RP
33(kg, zg|ks, zs;ω) =

∫ ∞

−∞
dx′TDU

2 (kg, zg|x′;ω)k2α(x′)TDD
0 (x′|ks, zs;ω), (66)

hold also, as do similar constructions at all orders. In fact in general the N ’th order reflected
primary approximation is the sum of contributions from component transmission series terms whose
combined order is N − 1. To wit:

RP
N (kg, zg|ks, zs;ω)

=
N−1∑

n=0

∫ ∞

−∞
dx′TDU

n (kg, zg|x′;ω)k2α(x′)TDD
N−n−1(x

′|ks, zs;ω).
(67)
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This result has practical and conceptual consequences. First, conceptually, and as mentioned above,
it underlines the meaning of this view, or model, of what a primary is in the language of scattering
theory; the result of a direct propagation down, transmitting non-linearly through the perturbed
medium, a single direction-changing scattering interaction, followed by a direct propagation up
again non-linearly through the overlying perturbation. Having designed the reflected primary
approximation with this thought in mind, it is perhaps not such a remarkable result, but that
idea followed from a view of the totality of the transmitted direct wavefield, not its order-by-order
representation. The order-by-order connectivity of the transmitted direct and reflected primary
wavefield approximations is less obviously true, at any rate to the eye of the author.

From a practical standpoint, it means that the recursive forms devised in section 4.3 for application
to the direct transmitted wavefield approximation are immediately applicable also to the reflected
primary case. This is an attractive prospect in that it permits potentially tractable forms for
forward construction of primaries through complex 2D and 3D overburdens, and furthermore its
lessons (e.g., Innanen, 2005) should contribute to the casting of the non-linear direct processing
algorithms applied to the same problem (in the vein of Liu et al. (2005) and elsewhere in this
report).

6 Reduction to the case of depth-variable (1D) media: series and closed forms

Beyond the conceptual “reasonableness” of the diagrammatic interpretation that spawned them,
there exists little by way of proof that these non-linear event approximations do what they are
claimed to do. This can be mitigated if we reduce them such that they need accommodate only
depth-varying media, in which case these series may be summed to closed-form and analyzed for
an understanding of (1) convergence and (2) what these terms are converging to. Practical and
numerical use is also made of such depth-varying forms later in this report (Innanen, 2006).

The new milieu will be to consider line sources and receivers over a medium whose P-wave velocity
may vary arbitrarily in depth. To begin, a refinement of the independent variables of the modelled
reflection/transmission experiments is needed. Reducing variability to a single lateral dimension
(x), the space vectors are redefined as

xg = (xg, zg),

xs = (xs, zs),

x′ = (x′, z′),

(68)

As such a fully descriptive wave experiment can be chosen to involve a single receiver location
xg, source plane waves characterized by lateral wavenumber ks and frequency ω (or the angle
θ = cos−1 qs/k these plane waves make with respect to the z axis), and the fixed source depth zs.
The scattered, reference, and actual wavefields are therefore

GS(xg|ks, zs;ω) =

∫ ∞

−∞
dx′G0(xg|x′;ω)k2α(z′)G(x′|ks, zs;ω), (69)

where k = ω/c0, and the series terms Gn are

G1(xg|ks, zs;ω) =

∫ ∞

−∞
dx′G0(xg|x′, z′, ω)k2α(z′)G0(x

′|ks, zs;ω), (70)
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at first order,

G2(xg|ks, zs;ω) =

∫ ∞

−∞
dx′G0(xg|x′, ω)k2α(z′)

∫ ∞

−∞
dx′′G0(x

′|x′′, ω)k2α(z′′)G0(x
′′|ks, zs;ω), (71)

at second order, and so on. The depth-variable medium perturbation α reduces to

α(z) = 1− c0
c2(z)

, (72)

and the forward scattering series for the scattered field is

GS(xg|ks, zs; θ) = G1(xg|ks, zs; θ) +G2(xg|ks, zs; θ) +G3(xg|ks, zs; θ) + ..., (73)

where, with reference Green’s functions substituted, the terms are given by

G1(xg|ks, zs; θ) = − 1

4 cos2 θ
eiksxg

∫ ∞

−∞
dz′eiqs|zg−z′|α(z′)eiqs|z′−zs|,

G2(xg|ks, zs; θ) =
i2qs

16 cos4 θ
eiksxg

∫ ∞

−∞
dz′eiqs|zg−z′|α(z′)

∫ ∞

−∞
dz′′eiqs|z′−z′′|α(z′′)eiqs|z′′−zs|,

G3(xg|ks, zs; θ) = − (i2qs)
2

64 cos6 θ
eiksxg

∫ ∞

−∞
dz′eiqs|zg−z′|α(z′)

∫ ∞

−∞
dz′′eiqs|z′−z′′|α(z′′)

×
∫ ∞

−∞
dz′′′eiqs|z′′−z′′′|α(z′′′)eiqs|z′′′−zs|,

(74)

etc. Because in the 3D case a representation in which depth was the only space coordinate explicitly
active in the scattering process was deliberately chosen, these terms, for which depth is the only
space coordinate at all the scattering process, may be acted upon with exactly the same strategy
in order to approximate transmitted-direct and reflected-primary wavefields.

6.1 Transmitted direct wave approximations

The “transmitted downward” wavefield is found by computing the series form of the full wavefield
with source above and receiver below the depth support of the perturbation:

TD
1 (xg|ks, zs; θ) = − 1

4 cos2 θ
eiksxge−iqs(zs−zg)

∫ ∞

−∞
dz′α(z′),

TD
2 (xg|ks, zs; θ) =

i2qs
16 cos4 θ

eiksxge−iqs(zs−zg)

∫ ∞

−∞
dz′e−iqsz′α(z′)

∫ ∞

−∞
dz′′eiqs|z′−z′′|α(z′′)eiqsz′′ ,

TD
3 (xg|ks, zs; θ) = − (i2qs)

2

64 cos6 θ
eiksxge−iqs(zs−zg)

∫ ∞

−∞
dz′e−iqsz′α(z′)

∫ ∞

−∞
dz′′eiqs|z′−z′′|α(z′′)

×
∫ ∞

−∞
dz′′′eiqs|z′′−z′′′|α(z′′′)eiqsz′′′ ,

(75)

and the direct component is achieved through a constraining of the scattering integrals as in section
4.1, such that at first-order there is no change, at second-order

TDD
2 (xg|ks, zs; θ) ≡

i2qs
16 cos4 θ

eiksxge−iqs(zs−zg)

∫ zg

0
dz′α(z′)

∫ z′

0
dz′′α(z′′), (76)
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and at third-order

TDD
3 (xg|ks, zs; θ) ≡ −

(i2qs)
2

64 cos6 θ
eiksxge−iqs(zs−zg)

∫ zg

0
dz′α(z′)

∫ z′

0
dz′′α(z′′)

∫ z′′

0
dz′′′α(z′′′), (77)

etc. In fact in general an (immediately) recursive form of the multidimensional downward trans-
mitted direct wavefield reduced to 1D is straightforward:

TDD
N (xg|ks, zs; θ) =

eiksxge−iqs(zs−zg)

i2qs

(
− i2qs

4 cos2 θ

)N

ΦN (zg),

Φi(z) =

∫ z

0
α(z′)Φi−1(z

′)dz′,

Φ0(z) ≡ 1.

(78)

For the upward transmitted direct wavefield the expression is slightly altered:

TDU
N (xg|ks, zs; θ) =

eiksxgeiqs(zs−zg)

i2qs

(
− i2qs

4 cos2 θ

)N

ΦN (zs),

Φi(z) =

∫ z

0
α(z′)Φi−1(z

′)dz′,

Φ0(z) ≡ 1.

(79)

6.2 Reflected primary field in 1D

The multi-dimensional reflected primary wavefield approximation likewise reduces straightforwardly,
first with the full reflected wavefield:

R1(xg|ks, zs; θ) = − 1

4 cos2 θ
eiksxge−iqs(zg+zs)

∫ ∞

−∞
dz′eiqsz′α(z′)eiqsz′ ,

R2(xg|ks, zs; θ) =
i2qs

16 cos4 θ
eiksxge−iqs(zg+zs)

∫ ∞

−∞
dz′eiqsz′α(z′)

∫ ∞

−∞
dz′′eiqs|z′−z′′|α(z′′)eiqsz′′ ,

R3(xg|ks, zs; θ) = − (i2qs)
2

64 cos6 θ
eiksxge−iqs(zg+zs)

∫ ∞

−∞
dz′eiqsz′α(z′)

∫ ∞

−∞
dz′′eiqs|z′−z′′|α(z′′)

×
∫ ∞

−∞
dz′′′eiqs|z′′−z′′′|α(z′′′)eiqsz′′′ ,

(80)

and subsequently (via scattering integral constraints identical to those of section 4.2) the primary
approximation is given, at second-order, as

RP
2 (xg|ks, zs; θ) =

i2qs
16 cos4 θ

eiksxge−iqs(zg+zs)

∫ ∞

−∞
dz′ ei2qsz′α(z′)︸ ︷︷ ︸

turn-around

(∫ z′

0
dz′′α(z′′)

)

︸ ︷︷ ︸
transmission down

+
i2qs

16 cos4 θ
eiksxge−iqs(zg−zs)

∫ ∞

−∞

(∫ z′

0
dz′′α(z′′)

)

︸ ︷︷ ︸
transmission up

ei2qsz′α(z′)︸ ︷︷ ︸
turn-around

,

(81)
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where the roles of the transmission-like entities are highlighted, and at third-order

RP
3 (xg|ks, zs; θ) =

(i2qs)
2

64 cos6 θ
eiksxge−iqs(zg+zs)

×
[∫ ∞

−∞
dz′eiqsz′

∫ z′

0
dz′′eiqs(z′−z′′)α(z′′)

∫ z′′

0
dz′′′eiqs(z′′−z′′′)α(z′′′)

+

∫ ∞

−∞
dz′eiqsz′

∫ z′

0
dz′′eiqs(z′−z′′)α(z′′)

∫ ∞

z′′
dz′′′eiqs(z′′′−z′′)α(z′′′)

︸ ︷︷ ︸
NEGLECT

+

∫ ∞

−∞
dz′eiqsz′

∫ ∞

z′
dz′′eiqs(z′′−z′)α(z′′)

∫ ∞

z′′
dz′′′eiqs(z′′′−z′′)α(z′′′)

+

∫ ∞

−∞
dz′eiqsz′

∫ ∞

z′
dz′′eiqs(z′′−z′)α(z′′)

∫ ∞

z′′
dz′′′eiqs(z′′′−z′′)α(z′′′)

]
,

(82)

where the reverberative element of the scattering integral has been shown explicitly (and labelled
for rejection from this approximation). With similar highlighting of the transmission-like quantities
internal to this approximation, the third-order primary approximation terms are

RP
3 (xg|ks, zs; θ) =

(i2qs)
2

64 cos6 θ
eiksxge−iqs(zg+zs)

×




∫ ∞

−∞
dz′ ei2qsz′α(z′)︸ ︷︷ ︸

turn-around

(∫ z′

0
dz′′α(z′′)

∫ z′′

0
dz′′′α(z′′′)

)

︸ ︷︷ ︸
transmission down

+

∫ ∞

−∞
dz′

(∫ z′

0
dz′′α(z′′)

)

︸ ︷︷ ︸
transmission up

ei2qsz′α(z′)︸ ︷︷ ︸
turn-around

(∫ z′

0
dz′′α(z′′)

)

︸ ︷︷ ︸
transmission up

+

∫ ∞

−∞
dz′

(∫ z′

0
dz′′α(z′′)

∫ z′′

0
dz′′′α(z′′′)

)

︸ ︷︷ ︸
transmission up

ei2qsz′α(z′)︸ ︷︷ ︸
turn-around



.
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In general, then, again a recursive form for this reduction to 1D of the multi-dimensional reflected
primary approximation is straightforward:

RP
N (xg|ks, zs; θ) =

eiksxge−iqs(zg+zs)

i2qs

(
− i2qs

4 cos2 θ

)N ∫ ∞

−∞
dz′

N∑

i=1

Φi(z
′)ei2qsz′α(z′)ΦN−i(z),

Φi(z) =

∫ z

0
α(z′)Φi−1(z

′)dz′,

Φ0(z) ≡ 1.

(84)
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6.3 Transmission-reflection relations in 1D

The order-by-order transmission-reflection relations derived in section 5 also reduce to much simpler
forms in the 1D case, both now involving the simpler recursive forms expressed by the function Φ.
Consider the orders A, B, and C, where we stipulate that A = B + C + 1. Writing the reflected
primary approximation series to order A, the downward transmitted direct wave approximation to
order B, and the upward transmitted direct wave approximation to order C produces

RP
A(xg|ks, zs; θ) =

eiksxge−iqs(zg+zs)

i2qs

(
− i2qs

4 cos2 θ

)A ∫ ∞

−∞
dz′

A−1∑

i=0

Φi(z
′)ei2qsz′α(z′)ΦA−i(z),

TDD
B (xD

g , zg|ks, zs; θ) =
eiksxge−iqs(zs−zg)

i2qs

(
− i2qs

4 cos2 θ

)B

ΦB(zg),

TDU
C (xU

g , zg|ks, zs; θ) =
eiksxgeiqs(zs−zg)

i2qs

(
− i2qs

4 cos2 θ

)C

ΦC(zs),

Φi(z) =

∫ z

0
α(z′)Φi−1(z

′)dz′,

Φ0(z) ≡ 1.

(85)

As in the multidimensional case, the quasi-linear combination of the TDD
B and TDU

C is of interest,
and is found to be:

∫ ∞

−∞
dz′TDU

C (xg|ks, z
′; θ)k2α(z′)TDD

B (xg, z
′|ks, zs; θ)

=
eiks(xD

g +xU
g )e−iqs(zg+zs)

i2qs

(
− i2qs

4 cos2 θ

)B+C+1 ∫ ∞

−∞
dz′ΦC(z′)ei2qsz′α(z′)ΦB(z′).

(86)

Noting that the exponent in the integral pre-factor is A, consider next the sum of all combinations
of B and C for which this B + C + 1 remains constant:

eiks(xD
g +xU

g )e−iqs(zg+zs)

i2qs

(
− i2qs

4 cos2 θ

)A ∫ ∞

−∞
dz′

A−1∑

i=0

Φi(z
′)ei2qsz′α(z′)ΦA−i(z

′). (87)

This expression is of the form of the reflected primary approximation series term at order A. In
terms of the orders of the transmitted direct wave approximations, this may be written in general
as

RP
B+C+1(x

U
g + xD

g , zg|ks, zs; θ) =
B+C∑

n=1

∫ ∞

−∞
dz′TDU

n (xU
g , zg|ks, z

′; θ)k2α(z′)TDD
B+C−n(xD

g , z
′|ks, zs; θ).

(88)

Notice that, because this 1D reduction involves space-domain receiver variables, account is taken
for any chosen offset between the lateral position of the receiver of the downward transmitted direct
wave and the receiver of the upward transmitted direct wave.
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6.4 Closed-forms and associated reflection-transmission relations

The most compelling reason to reduce the multidimensional expressions for reflected primary and
transmitted direct wavefields to media that vary in depth only is that closed-forms are available: this
is the greatest source of evidence that the series terms (as chosen through the scattering-geometry
based retention/rejection program) do in fact result in plausible and useful approximations of
the desired wavefield events. The closed-forms arise in 1D because the nested integrals over the
perturbation (which arise for media in all dimensions) in this case simplify. In fact, they simplify
to the point where, e.g., a twice-nested integral is equivalent to a single integral to the second
power. Consider Φ2, the core element of the scattering integrals of all three approximations at
second order:

Φ2(z) =

∫ z

0
α(z′)Φ1(z

′)dz′

=

∫ z

0

dΦ1

dz′
Φ1(z

′)dz′

=
1

2

∫ z

0

d

dz′
[
Φ1(z

′)
]2
dz′

=
1

2
Φ2

1(z
′).

(89)

This pattern repeats, so that in general:

Φn(z) =
1

n!

(∫ z

0
α(z′)dz′

)n

. (90)

Making this substitution in all terms of the upward transmitted direct series approximation results
in:

TDU (xg|ks, zs; θ) =
∞∑

n=0

TDU
n (xg|ks, zs; θ)

=
eiksxgeiqs(zs−zg)

i2qs

∞∑

n=0

(
− i2qs

4 cos2 θ

)n

Φn(zs)

=
eiksxgeiqs(zs−zg)

i2qs

∞∑

n=0

1

n!

(
− iqs

2 cos2 θ

∫ zs

0
α(z′)dz′

)n

=
eiksxgeiqs(zs−zg)

i2qs
e−

iqs
2 cos2 θ

R zs
0 α(z′)dz′ ,

(91)

likewise with the downward transmitted direct series approximation:

TDD(xg|ks, zs; θ) =
eiksxge−iqs(zs−zg)

i2qs
e−

iqs
2 cos2 θ

R zg
0 α(z′)dz′ , (92)
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and, finally, the reflected primary series approximation:

RP (xg|ks, zs; θ) =
∞∑

n=0

RP
n (xg|ks, zs; θ)

=
eiksxge−iqs(zg+zs)

i2qs

∞∑

n=0

(
− i2qs

4 cos2 θ

)n ∫ ∞

−∞
dz′

n∑

i=1

Φi(z
′)ei2qsz′α(z′)Φn−i(z)

=
eiksxge−iqs(zg+zs)

i2qs

∞∑

n=0

(
− i2qs

4 cos2 θ

)n ∫ ∞

−∞
dz′

n∑

i=1

[Φ1(z
′)]i

i!
ei2qsz′α(z′)

[Φ1(z)]
n−i

(n− i)!

=
eiksxge−iqs(zg+zs)

i2qs

∫ ∞

−∞
dz′ei2qsz′

∞∑

n=0

(
− i2qs

4 cos2 θ
Φ1(z

′)

)n

α(z′)

(
n∑

i=0

1

n!(n− i)!

)

=
eiksxge−iqs(zg+zs)

i2qs

∫ ∞

−∞
dz′e

i2qs

h
z′− 1

2 cos2 θ

R z′

0 α(z′′)dz′′
i

α(z′).

(93)

The aim of these series, replete with nested integrals of the perturbation, becomes more transparent:
the terms are working to generate a specific non-linear activity involving the perturbation, that
in 1D amounts to placing it in the argument of a complex exponential. From this vantage point
up in the exponential, so to speak, the perturbation has the wherewithal to affect the phase and
amplitude of the (1D) wavefield. In the 3D situation essentially the same activity is occurring, but
with an exponential phase term at each juncture in the nested integrals (see equations 57–58 for
example), which halts the straightforward collapse of these terms to closed form, but which, through
the difference in depth wavenumbers before and after the scattering interaction, may account for
propagation through a multidimensional overburden.

Moreover, the reflection-transmission relations may be expressed in closed-form also:
∫ ∞

−∞
dz′TDU (xU

g , zg|ks, z
′; θ)k2α(z′)TDD(xD

g , z
′|ks, zs; θ)

=

∫ ∞

−∞
dz′

[
eiksxU

g eiqs(z′−zg)

i2qs
e−

iqs
2 cos2 θ

R z′

0 α(z′′)dz′′

]
k2α(z′)

[
eiksxD

g e−iqs(zs−z′)

i2qs
e−

iqs
2 cos2 θ

R z′

0 α(z′′)dz′′

]

=− i2qs
4 cos2 θ

eiks(xU
g +xD

g )e−iqs(zg+zs)

i2qs

∫ ∞

−∞
dz′e

i2qs

h
z′− 1

2 cos2 θ

R z′

0 α(z′′)dz′′
i

α(z′)

=− i2qs
4 cos2 θ

RP (xU
g + xD

g , zg|ks, zs; θ).

(94)

This suggests that the desired outcome of the “there and back” retention/rejection scheme, which
is difficult to validate in the fully multidimensional case, has been realized. The reflected primary
approximation is enacted through a non-linear transmitted direct wavefield propagating downward
to the target, scattering, and propagating as a non-linear transmitted direct wavefield upward to the
receiver. The non-linearity in the nested integrals is effecting to propagate the wavefield through
an overburden not included in the reference medium. In 1D this amounts to the creation of new,
transmission-only, Green’s functions TDD and TDU between which a scattering interaction takes
place. In multiple dimensions a similar process is taking place but in a manner that (presently)
can only be represented as a series.
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7 Conclusions

A combination of constrained scattering geometry, source/receiver locations, and Green’s functions
in bilinear form, may be used to produce an approximation of two important and related types
of wavefield event using the forward scattering series. The approximation is specifically designed
to operate given any level of spatial variability in the wavespeed in a constant density acoustic
medium, and a homogeneous reference medium.

The aims are twofold: first, recent research suggests that the mechanisms of construction of pri-
maries with the forward series leads – directly and/or indirectly – to the forms for processing and
inversion of the same wavefield component in the inverse scattering series. Second, a volume scat-
tering model of primaries reflected from, and direct waves transmitted through, multidimensional
structure may be a useful addition to a wave-theoretic forward modelling toolbox.

Order-by-order and (for 1D media) in closed-form the two wavefield types are seen to be closely
related in this approximation. Furthermore – and of most interest for computational purposes – the
2D/3D forms, which require a series, can at least be written recursively. That is, the 100th term
may require computation but it may be computed as a reasonable straightforward set of operations
upon the 99th term.

Computation of these terms (for forward modelling purposes), and direct inversion of these terms
(for direct non-linear processing of reflection data) are the subjects of current and ongoing research.
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The forward scattering series and diffractions: non-linear series and
closed-form expressions for wavefields reflecting from 2D medium structure

Kristopher A. Innanen

Abstract

In this paper, previously discussed non-linear expressions for wavefield events that are re-
flected from and transmitted through multidimensional, unincorporated, medium structure (un-
incorporated meaning not included in the reference medium) are further developed. The sim-
plicity of the non-linear expressions when this unincorporated part of the medium is restricted
to variation in depth only is leveraged to investigate the activity of the forward scattering se-
ries in producing wavefields that have interacted with – nevertheless– multidimensional target
structure. To be specific, a summation of forward scattering series terms (i.e., a closed-form) is
proposed that, to an acceptable level of accuracy, models diffracted wavefield reflections. This
occurs through a program of retention of series terms that are non-linear in the depth-dependent
component of the perturbation, and linear in the multidimensional, or diffractive, component.

1 Introduction

Earlier in this report (Innanen, 2006) a set of expressions and relations within the forward scattering
series were postulated for approximating reflected primaries and transmitted direct waves in media
that vary in three dimensions; closed-form expressions and relations applicable to media that vary in
the depth dimension only were also derived. It is an inconvenient fact that the forward scattering
series expressions for “interesting” wave fields, that interact with media with 2D/3D structure,
require a series, while the eminently computable and interpretable forward series closed-forms
involve the construction of wave fields that have propagated through highly restricted (1D) media.
An example of a wavefield component that exists in 2D and 3D but not in 1D is a diffraction – an
important and highly visible part of most reflection seismograms.

In this paper I propose a forward scattering series framework for the construction of inherently
multidimensional events, such as diffractions, that with certain approximations may yet capitalize
on the closed-forms available to the 1D case. The framework makes a distinction between parts of
a medium that can be considered “targets” and parts that can be considered “overburden” while
retaining them both in the perturbation part of the medium decomposition. It turns out that if we
assume the overburden to vary in depth only, we can use the closed-form machinery of the 1D
non-linear forward scattering series terms to create approximations of wavefields reflected from
targets that have 2D structure. The point of this would be twofold: first, guide the identification of
inverse scattering series terms that concern themselves with the processing of diffractive primaries;
second, investigate the applicability of the forward scattering series, a volume scattering formalism
for forward modelling markedly different from, say, finite difference and reflectivity methodologies.

The non-linear terms of the forward scattering series that are concerned with the construction of
primaries labor to accommodate deviations of the actual medium from the reference medium. In
particular, non-linear series activity is heightened in describing the effect of regions of sustained,
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large deviation. Small, transitory deviations, or perturbations (see, e.g., the medium structure
illustrated in Figure 1), are often well-described with the linear term of the forward scattering series.
Targets beneath an overburden with sustained deviations from the reference medium aggravate the
error in this linear approximation. Forward scattering subseries primary approximations of Innanen
(2005; 2006) were developed to address these circumstances. In those references, we find that a
fully 1D overburden and target structure admits primary approximation subseries of the forward
scattering series that have closed-forms. Meanwhile, a fully 3D overburden and target structure
requires, for forward scattering subseries approximations to accomplish the same goal, a series
that as yet has no closed-form. Since, however, the non-linear activity exists in large part to take
account of the overburden, the simplicity of the 1D problem is transferred into (non-collapsible)
complexity in the multi-dimensional case in large part because of the onset of lateral variability
in the overburden. Which leads to the question: therefore, can we not, given a predominantly
1D overburden and targets with multi-dimensional but small-contrast and non-spatially sustained
structure, formulate a non-linear primary approximation that has a closed-form? A quantitative
answer to that question – in the affirmative – is the subject of the balance of this paper.

2 Terminology

A single-parameter 2D acoustic constant density medium is considered, in which the reference
medium is chosen to be a homogeneous wholespace characterized by wavespeed c0. The reference
and the actual media are therefore assumed to be described by the wave equations

[
∇2

g +
ω2

c20

]
G0(xg, zg|xs, zs;ω) = δ(xg − xs)δ(zg − zs), (1)

and [
∇2

g +
ω2

c2(x, z)

]
G0(xg, zg|xs, zs;ω) = δ(xg − xs)δ(zg − zs), (2)

where xg, zg are the lateral and vertical coordinates of the observation point and xs, zs are the co-
ordinates of the source point. The Green’s functions for the reference medium are straightforwardly
given in various useful domains by

G0(kg, zg|x′, z′; k) = e−ikgx′ eiqg |zg−z′|

i2qg
,

G0(x
′, z′|ks, zs; k) = eiksx′ eiqs|z′−zs|

i2qs
,

G0(x
′, z′|x′′, z′′; k) =

(
1

2π

)∫ ∞

−∞
dk1e

ik1(x′−x′′) e
iq1|z′−z′′|

i2q1
,

(3)

where qn is a depth wavenumber defined by k = ω/c0 and a given lateral wavenumber kn:

q2n = k2 − k2
n. (4)

The actual medium, characterized by the wavespeed distribution c(x, z), is expressed in terms of
the reference medium, in which waves behave as per eqn. (2), and the perturbation

α(x, z) = 1− c20
c2(x, z)

. (5)
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At points during this development it will be useful to restrict the actual medium to have variability
only in the vertical (depth) coordinate direction: c = c(z).

An approximation to the scattered field (ψ = G − G0) is generated in these notes order by order
in α, i.e., as the series

ψ = ψ1 + ψ2 + ψ3 + ..., (6)

in which ψn is considered to be that portion of the wave field that is n’th order in the perturbation.
The developments of the following section start from this point, making use of the constraints of
the scattering integrals that are discussed specifically by Innanen (2006) and that also underlie
(and are predated by) the manipulations of the inverse scattering series for task-separated primary
processing (e.g., Weglein et al., 2003).

3 Modelling diffractions beneath a 1D perturbed overburden

A 1D medium, i.e., one that varies in depth only, produces a highly redundant reflection wave
experiment; to wit, all source and receiver pairs that have the same lateral separation produce
the same result. In previous 1D developments this was handled by considering experiments with
sources everywhere and a single receiver (which permitted the use of plane incident waves), but could
equivalently have been expressed vice versa, i.e., as an experiment with a single source and receivers
everywhere (and therefore expressed in coordinates kg, xs). Here a 1D medium is considered for
sources and receivers everywhere for purposes that will become clearer in the following section;
hence, the redundancy of the experiment appears much more explicitly in the modelling equations.

3.1 An approximation of reflected primaries for depth-variable perturbations

Considering the wave field in conjugate lateral coordinates kg and ks, the first three terms in the full
forward scattering series for a homogeneous reference medium with depth-varying perturbations
on the wavespeed are

ψ1(kg, zg|ks, zs; k) =

∫ ∞

−∞
dx′
∫ ∞

−∞
dz′G0(kg, zg|x′, z′; k)k2α(z′)G0(x

′, z′|ks, zs; k), (7)

ψ2(kg, zg|ks, zs; k) =

∫ ∞

−∞
dx′
∫ ∞

−∞
dz′G0(kg, zg|x′, z′; k)k2α(z′)

×
∫ ∞

−∞
dx′′

∫ ∞

−∞
dz′′G0(x

′, z′|x′′, z′′; k)k2α(z′′)G0(x
′′, z′′|ks, zs; k),

(8)

and

ψ3(kg, zg|ks, zs; k) =

∫ ∞

−∞
dx′
∫ ∞

−∞
dz′G0(kg, zg|x′, z′; k)k2α(z′)

×
∫ ∞

−∞
dx′′

∫ ∞

−∞
dz′′G0(x

′, z′|x′′, z′′; k)k2α(z′′)

×
∫ ∞

−∞
dx′′′

∫ ∞

−∞
dx′′′G0(x

′′, z′′|x′′′, z′′′; k)k2α(z′′′)G0(x
′′′, z′′′|ks, zs; k).

(9)
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Placing the source and receiver depths on the same side (above) the depth-support of the pertur-
bation, a series expression for the reflected wavefield is created. Applying the constraints to the
depth integrals that isolate primary-like scattering geometries (Innanen, 2006), and calling these
primaries Rn, results in, to third order,

R1
P (kg, zg|ks, zs; k) = −δ(kg − ks)

∫ ∞

−∞
dz′

eiqgz′

i2qg
k2α(z′)

eiqsz′

i2qs
, (10)

R2
P (kg, zg|ks, zs; k) =

i

2
δ(kg − ks)

∫ ∞

−∞
dz′

eiqgz′

i2qg
k2α(z′)

eiqsz′

i2qs

(
qs

∫ z′

0 α(z′′)dz′′

q2s/k
2

)

+
i

2
δ(kg − ks)

∫ ∞

−∞
dz′

eiqgz′

i2qg

(
qg

∫ z′

0 α(z′′)dz′′

q2g/k
2

)
k2α(z′)

eiqsz′

i2qs
,

(11)

and

R3
P (kg, zg|ks, zs; k) =− 1

4
δ(kg − ks)

∫ ∞

−∞
dz′

eiqgz′

i2qg
k2α(z′)

eiqsz′

i2qs

(
qs

∫ z′

0 α(z′′)dz′′

q2s/k
2

)2

− 1

4
δ(kg − ks)

∫ ∞

−∞
dz′

eiqgz′

i2qg

(
qg

∫ z′

0 α(z′′)dz′′

q2g/k
2

)
k2α(z′)

eiqsz′

i2qs

(
qs

∫ z′

0 α(z′′)dz′′

q2s/k
2

)

− 1

4
δ(kg − ks)

∫ ∞

−∞
dz′

eiqgz′

i2qg

(
qg

∫ z′

0 α(z′′)dz′′

q2g/k
2

)2

k2α(z′)
eiqsz′

i2qs
.

(12)

Within the scattering integral however the source and receiver depth wavenumbers qg and qs are
explicitly present, and this will be key in the next section to accord to the mathematics the ability
to create expressions for diffractions.

In the closed-forms derived previously, the depth wavenumbers qs (from the source) and qg (to the
receiver) were merged into the single “two-way” wavenumber 2qs; here they are kept separate. The
reduction to closed-form therefore is slightly complicated by the presence of both these wavenumbers
in the mathematics. However, considering two Taylor’s series expansions, the first being

exp

(
− iqg

2 cos2 θg

∫ z

0
α(z′′)dz′′

)

= 1 +

(
− iqg

2 cos2 θg

∫ z

0
α(z′′)dz′′

)
+

1

2!

(
− iqg

2 cos2 θg

∫ z

0
α(z′′)dz′′

)2

+
1

3!

(
− iqg

2 cos2 θg

∫ z

0
α(z′′)dz′′

)3

+ ...,

(13)

and the second being

exp

(
− iqs

2 cos2 θs

∫ z

0
α(z′′)dz′′

)

= 1 +

(
− iqs

2 cos2 θs

∫ z

0
α(z′′)dz′′

)
+

1

2!

(
− iqs

2 cos2 θs

∫ z

0
α(z′′)dz′′

)2

+
1

3!

(
− iqs

2 cos2 θs

∫ z

0
α(z′′)dz′′

)3

+ ...,

(14)
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and in particular noting the forms that appear due to their product:

exp

(
− iqg

2 cos2 θg

∫ z

0
α(z′′)dz′′

)
exp

(
− iqs

2 cos2 θs

∫ z

0
α(z′′)dz′′

)

=1 +

(
− iqs

2 cos2 θs

∫ z

0
α(z′′)dz′′

)
+

(
− iqg

2 cos2 θg

∫ z

0
α(z′′)dz′′

)
+

1

2!

(
− iqg

2 cos2 θg

∫ z

0
α(z′′)dz′′

)2

+

(
− iqs

2 cos2 θs

∫ z

0
α(z′′)dz′′

)(
− iqg

2 cos2 θg

∫ z

0
α(z′′)dz′′

)
+

1

2!

(
iqs

2 cos2 θs

∫ z

0
α(z′′)dz′′

)2

+ ...,

(15)

the emergent patterns are readily applied to the expressions in equations (10)–(12), leading to a
closed-form for the sum over an infinite number of these primary generating terms RP = R1

P +
R2

P +R3
P + ...:

RP (kg, zg|ks, zs; k) = δ(kg − ks)

∫ ∞

−∞
dz′

e
iqg

»
z′− 1

2 cos2 θg

R z′

0 α(z′′)dz′′
–

i2qg
k2α(z′)

e
iqs

h
z′− 1

2 cos2 θs

R z′

0 α(z′′)dz′′
i

i2qs
.

(16)

In its present form this expression does exactly the same job as the previous version of the closed-
form reflected primary approximation. This version forms the basis for the diffracted primary
approximation.

3.1.1 Post-critical phenomena

An interesting and important aspect of this approximation is that it will involve a new and unusual
“choice of solutions” beyond the critical angle, never encountered in the linear problem. Post-
critical refers to combinations of k, kg and ks for which qg or qs are imaginary; wave solutions must
be chosen such that in these regimes an evanescent, or vanishing, wavefield exists. The wrong choice
leads to an increase without bound of the post-critical wavefield amplitudes during propagation.

We have seen that the cumulative effect of the non-linear terms of the forward scattering series
is to alter the argument of the exponentials with a factor that depends both on qg and/or qs
and the integral of the perturbation, which at a given z value can be either positive or negative,
depending on the relative sizes of the actual and reference medium wavespeeds. The overall sign
of the argument may therefore in general be expected to toggle positive and negative over the
support of a given model. Since the [correct] decay or [incorrect] growth of the solution relies on
it being one or the other, left to its own devices, this non-linear expression would likely experience
instability. This may be a further example of the convergence problems already detected for the
forward scattering series at and beyond the critical angle (Nita et al., 2004).

There would appear to be two ways to proceed. First, as is often done in any case, the post-
critical components of the wavefield could simply be avoided in all calculations. Since the physical
solution always decays, these components are generally small. On the other hand, we are always
justified in choosing the correct of two solutions, hence, in any calculation, replacing

∫ z
0 α(z′)dz′

with
[
sgn

(∫ z
0 α(z′)dz′

)] ∫ z
0 α(z′)dz′, for post-critical angles only, should bear fruit. To put it into

words, simply because the non-linear terms are lengthening rather than shortening the propagation
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time of an event in accordance with the sign of the perturbation, does not suggest that at post-
critical angles the field should do anything but decay. We must expect similar considerations to be
in play in the absorptive/dispersive problem also.

3.2 Reflected primaries expressions for moderate- and large-contrasts

In addition to using the expression for reflected primaries over a 1D perturbation given in equation
16, which is the forward analog to the “leading order” reflector location (and amplitude correction)
primary processing subseries of the inverse scattering series, a generalization incorporating “high
order” terms of the forward scattering series may be made using the same argument as those made
by Innanen (2005). Let us consider the leading order version, as derived in the previous section, to
be appropriate for media with “moderate” contrasts in the perturbation, and re-write it as

RM
P (kg, zg|ks, zs; k) = δ(kg − ks)

∫ ∞

−∞
dz′

eiqg[z′+ZMU(z′,α,θg)]

i2qg
k2α(z′)

eiqs[z′+ZMD(z′,α,θs)]

i2qs
, (17)

in which the cumulative effect of the non-linearity in α is contained in the functions ZMD(z′, α, θs)
and ZMU(z′, α, θg), which are given by

ZMU(z′, α, θ) =
1

2 cos2 θ

∫ z′

0
α(z′′)dz′′ (18)

As is developed and capitalized on by Innanen (2005) and Liu et al. (2005), this “Z” may be
adapted to accommodate “large” contrasts, thus resulting in a further approximation of the reflected
primaries:

RL
P (kg, zg|ks, zs; k) = δ(kg − ks)

∫ ∞

−∞
dz′

eiqg[z′+ZLU(z′,α,θg)]

i2qg
k2α(z′)

eiqs[z′+ZLD(z′,α,θs)]

i2qs
, (19)

in which

ZLU(z′, α, θ) =
1

2 cos2 θ

∫ z′

0

α(z′′)

1− 1
4α(z′′)

dz′′. (20)

There are reasons to use both of these expressions: the leading order (or moderate contrast) Z
function will produce an expression with error at large contrast, but it is the result of a series that
converges for any α at a finite frequency. Meanwhile, the high order (or large contrast) Z function
produces results that maintain accuracy over a larger range of contrasts, provided those contrasts
are such that |α/4| < 1, to ensure convergence. In the numerical results in this paper I use the
large contrast expression.

3.3 A “non-linear overburden, linear diffractor” approximation

The reflected primary results in the previous section are attractively compact, but, as stated, apply
to media whose variation is in depth only. Let us next apply these ideas to a forward scattering
series framework in which a wavefield is generated that is non-linear in certain components of the
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medium but linear in others in a way that permits multi-D wavefields to be created using our
previous 1D mathematical machinery.

Consider a velocity perturbation on a homogeneous reference medium that has a component with
vertical variation only and a component that varies both vertically and horizontally. In other words,
consider a perturbation

α(x, z) = A(z) +B(x, z), (21)

wherein, for example, A(z) could be considered an overburden overlying a scattering body, or target,
B(x, z) (e.g., Figures 1-2). Placing this form into the first order term of the forward scattering
series with reflection-like source/receiver depths results in

R1(kg|ks; k) =

∫ ∞

−∞
dz′
∫ ∞

−∞
dx′e−ikgx′ eiqgz′

i2qg
k2α(x′, z′)eiksx′ eiqsz′

i2qs

= − k2

qgqs

∫ ∞

−∞
dz′ei(qg+qs)z′

[
A(z′) +

∫ ∞

−∞
dx′ei(ks−kg)x′

B(x′, z′)

]
,

(22)

or

R1(kg|ks; k) =− δ(kg − ks)
k2

qgqs

∫ ∞

−∞
dz′ei(qg+qs)z′A(z′)

− k2

qgqs

∫ ∞

−∞
dz′ei(qg+qs)z′B(kg − ks, z

′).

(23)

Comparing equation 23 with equation 10 the result can be seen to be the sum of (1) the linear part
of a series exactly like that of the fully 1D case, but now involving the “overburden” A(z) instead
of the full α(z), and (2) the linear part of the reflection from the vertically- and laterally-varying
“target” component B. We know that proceeding with only A results in a closed-form solution,
and we know that proceeding with only B results in more complex forms at high orders.

At high order we encounter terms that are, loosely, quadratic in α, then cubic in α, and so forth,
hence, for an α that has two additive components A and B the first few terms (of either the full
forward scattering series or the reflected primary approximation derived from it) will involve the
following combinations of these components:

A︸︷︷︸
ovrbrdn.

+ B︸︷︷︸
ovrbrdn. + targ.

A2
︸︷︷︸

ovrbrdn.

+ AB︸︷︷︸
ovrbrdn. + targ.

+B2

A3
︸︷︷︸

ovrbrdn.

+ A2B︸︷︷︸
ovrbrdn. + targ.

+B2A+A3

A4
︸︷︷︸

ovrbrdn.

+ A3B︸︷︷︸
ovrbrdn. + targ.

+A2B2 +AB3 +B4

... .

(24)

Let these terms be a set from which we allow ourselves to selectively retain and/or reject any desired
element in order to attain our goals. For instance, if we were to retain only the first (leftmost)
column of these terms and reject all others, the primary approximation would be insensitive to
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the “target” component B, and would return a reflected primary approximation whose events
would correspond to an experiment in which A(z) represented the only medium variation, and
this approximation would have a closed-form as in, e.g., equation 19. Note that the series terms
have had to do two things in creating this closed form: they needed α to non-linearly produce
exponential functions to alter the phase and amplitude of the linear wavefield approximation, and
they needed α to remain in the integrand to be acted upon by these exponential functions. In the
sense of the descriptive scheme of equation 24, these two things occur as follows: the set of terms
A+A2 +A3 +A4 + ... has one A taken out of each term, A(1 +A+A2 +A3 + ...), after which the
bracketed activity works to create the exponential functions, leaving the remaining A to be acted
on by them.

Consider next the result of retaining only the second column of contributions to the reflected
primary approximation series in equation 24. In it the target component B(x, z) is incorporated but
only once per term: B+BA+BA2+BA3+... etc. Notice that this lets B act in the second capacity
as described above, that is, schematically, it is separable from the herd: B(1 +A+A2 +A3 + ...).
This subgroup of forward scattering series terms will work to create non-linear corrections to
the propagation of an event through a depth-varying medium, by creating the exact exponential
functions used in the fully 1D case. However, these corrective functions will act on the 2D target
B only.

The consequence of retaining this subset of terms is straightforward. Non-linearity is to be ac-
counted for in the depth-varying (overburden) component of the medium only; the target compo-
nent, which may vary in two dimensions, is only linearly accounted for. These circumstances are
acceptable if the target has the same characteristics that make any linear approximation accept-
able: it is of low contrast and is not spatially sustained. If that is the case, the non-linear forward
scattering series approximation for the wavefield reflected from the target given by a perturbation
B(x, z) that underlies the perturbation A(z),

RDf (kg|ks; k) =

∫ ∞

−∞
dz′

eiqg[z′−ZLU(z′,A,θg)]

i2qg
k2B(kg − ks, z

′)
eiqs[z′−ZLD(z′,A,θs)]

i2qs
, (25)

where the Z functions are as given in section 3.2, is an accurate one.

4 Numerical examples

Equation 25 is a 2D prescription for modelling of the reflected primaries from an diffractive target
(B(x, z)) that underlies a depth-dependent overburden A(z) with sustained spatial support without
including the latter in the reference medium. The prescription takes on some of the qualities
of a modelling scheme that has included the overburden in the reference medium. To wit, the
exponential functions take on aspects of two new transmitting Green’s functions accounting for the
perturbation. This resemblance technically holds, but becomes far less apparent in more complex
multidimensional environments however, for which a series is required (Innanen, 2006). In this
section I demonstrate the numerical behavior of this prescription.

Figure 1 is an illustration of the 2D target component of the perturbationB(x, z), corresponding to a
spatially-varying structure with a constant deviation of 0.2 away from the reference, in total (Figure
1a) and in detail (Figure 1b). The target is a heterogeneous set of diffracting bodies between 40 and
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80m deep and extending approximately 30m about the chosen lateral origin. Figure 2 illustrates
the same target now overlain by the depth dependent overburden A(z), which is chosen to be a set
of two layers, of increased wavespeed (4500m/s and 6500m/s in contrast to the reference wavespeed
of 1500m/s), with a layer thickness of 10m each.

The prescription in equation 25 is carried out on both input models, leading to an expression in the
kxg , kxs , ω domain. This is inverse Fourier transformed into the xg, xs, t domain, and three shot
records are displayed in each of Figures 3 and 4. These correspond to shot locations xs = −16.0m,
xs = 0.0m, and xs = 16.0m in Figures 3 and 4a, b, and c respectively.

The delay and move-out alterations to the complex target response, expected in this example
involving a large intermediary velocity increase, is the most noticeable effect.
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Figure 1: Diffracting scatterers model in the absence of an overburden: (a) in full, and (b) in detail.
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Figure 2: Diffracting scatterers model in the presence of a two layer overburden: (a) in full, and (b) in detail.
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Figure 3: Three shot records associated with the “no overburden” example (Figure 1): (a) xs = 16m to the left of
center of the scatterer model, (b) xs = 0m directly above the scatterer model, and (c) xs = 16m to the
right of center of the scatterer model.

5 Conclusions

General series expressions for direct transmitted wavefields and reflected primary wavefields prop-
agating through multidimensional perturbations (that are, i.e., unincorporated in the background
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Figure 4: Three shot records associated with the “with overburden” example (Figure 2): (a) xs = 16m to the left
of center of the scatterer model, (b) xs = 0m directly above the scatterer model, and (c) xs = 16m to the
right of center of the scatterer model.

reference medium), have been developed in this report (Innanen, 2006). Elsewhere (Innanen and
Weglein, 2006), we demonstrate the salutary effect of manipulating series expressions such that
some components of the perturbation are acted on linearly and some non-linearly.

In the latter reference we find it useful to selectively apply linear or non-linear processing with
respect to specific parameters of the perturbation. In this paper we find it useful to selectively apply
linear and/or non-linear computations to model components with specific spatial dimensionality.
The ability to act with these related kinds of linear/non-linear selectivity would appear to be one
of the greatest strengths of the forward and inverse scattering series.

The linear/non-linear selectivity is here used to approximate diffractive wavefield events that have
a 1D overburden in their propagation history not included in the reference medium. Numerical
investigation appears to confirm the accuracy of these expressions, taking the diffractions and
operating on them non-linearly in the perturbation such that their phase (visible in their arrival
times and move-out patterns) alter as expected given the unincorporated overburdens.

A rapidly computable expression such as this may be a useful tool for forward modelling and/or as
a driver for an indirect inverse procedure, or (of more interest for this program) either conceptually
informing the derivation of direct inverse procedures (as did Matson (1996) and others), or perhaps
forming a forward scattering series primary approximation that may be directly inverted order-by-
order as discussed by Innanen (2005). In all likelihood these two latter approaches will result in
very similar direct inversion prototype algorithms that have the wherewithal – should they exist –
to non-linearly process diffractions.

Given the insight into the forward problem derived here, is there anything we can now say, anticipat-
ing the nature of these postulated direct inverse processing algorithms? Consider the activity seen
thus far, in, e.g., equation 25, first imagining A(z) = 0. An intercept time and move-out pattern is
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established with the “double square root” operators in the argument of the exponential (involving
qs and qg), that is by assumption acceptably accurate when there exists no unincorporated overbur-
den. The non-zero perturbation conjoins with and alters the components of this double square root,
altering the existing intercept time and move-out pattern. Hence, it is reasonable to assume that a
direct processing procedure, deriving from the inverse scattering series, acting on such diffractions,
would involve a collapsing of wave energy in accordance with a correction of the zero-perturbation
double square root operators. The corrections would be driven by data self-interaction, which in
the inverse direction takes the place of the perturbation self-interaction of the forward scattering
series. Given previous experience with the symmetry of the forward and inverse scattering series,
that a corresponding inverse procedure would have these properties seems highly likely, but that
remains a subject of current and future research.
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Accurate implementation of the wavelet in finite-difference modelling

Fang Liu and Arthur Weglein

Abstract

As we develop direct non-linear imaging and target identification methods based on the
inverse scattering series (as well as other series based processing methods), which are ambitious
in the sense of data interrogation, tools for testing and validation of these methods become
increasingly important. For example, as methods are extended to multiple dimensions, we
require forward modelling tools that provide a wave-accurate set of multidimensional input
synthetic data. This paper outlines some issues encountered when utilizing finite difference
schemes to provide such tools, and some strategies for overcoming them. We discuss: (1) a
straightforward quality control method for finite-difference modelling, (2) accurate inclusion of
the source signature in more flexible locations, especially in the presence of a free-surface and
(3) the physical meaning of a discontinuous model, implemented in multi-dimensional array.

1 Introduction

This Annual Report comprises recent developments in the development of a comprehensive and
direct wave-theoretic approach to the seismic inverse problem, largely based on the task-separated
inverse scattering series. In the last two years or so, extensions of prototype algorithms along
these lines have included (1) to multiparameter acoustic, elastic, and viscoacoustic media, (2) to
multidimensional media, and (3) to large contrast media. As we develop direct non-linear imaging
and target identification methods based on the inverse scattering series (as well as other series based
processing methods), which are ambitious in the sense of data waveform interrogation, tools for
testing and validation of these methods become increasingly important. Specifically, as methods are
extended to multiple dimensions, we require forward modelling tools that provide a wave-accurate
set of input synthetic data. This paper outlines some issues encountered when utilizing finite
difference schemes to provide such tools, and some strategies for overcoming them.

Forward modelling is a mature topic in exploration seismology. For non-constant media, especially
media with lateral variations, an analytic solution to the wave-equation is very difficult to obtain.
Alford et al. (1974) introduced a finite-difference approximation to acoustic differential equations
and demonstrated its usefulness as applied to exploration seismology. Later effort included the use
of specific boundary conditions to minimize boundary artifacts (Reynolds, 1978), generalization of
the acoustic scheme to full-elastic (Kelly et al., 1976), improvement of the accuracy of the spatial
derivatives by means of both the Fourier transform (Kosloff and Baysal, 1982) and higher-order
evaluation (Dablain, 1986).

This article discusses several issues in finite difference modelling. In particular, it discusses the
physical meaning of the finite-difference approximation for discontinuous media and the accurate
implementation of the wavelet. A constant density acoustic medium is considered.

A finite difference approximation of the wave-equation is a kind of digitization of the original
problem. Compared with reflectivity and Cagniard-de Hoop method (discussed by J. Zhang in this
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report), the finite-difference method has the ability to handle lateral variations in the medium;
however, it does not have the analytic accuracy of those other methods. In particular, the accuracy
of the approximation depends strongly on the digitation interval.

Current seismic imaging algorithms take advantage of knowledge of subsurface velocity structure to
place events at their correct spatial locations. The most important aspect of the data contributing
to the success of these algorithms is therefore the correct arrival time. In comparison, the waveform
of the events are much less critical. This is no longer true for the prototype methods based on
the inverse scattering series, where not only time information, but exact and complete waveform
information is much preferred.

In this paper we first derive some analytic solutions for wavefields in media without lateral vari-
ations, and introduce a set of tools for validation of the amplitudes generated by finite difference
approximations of these same wavefields. These tools are first used to demonstrate some weaknesses
in pre-packaged finite difference modellers, after which some strategies for FD parameter choice are
discussed which circumvent the weaknesses.

2 Analytic solutions for media without lateral variations

After the geological model is identified, modelling parameters must be chosen: 4x (the sampling
rate in the x-direction), 4z (the sampling rate in the z-direction), 4t (the sampling rate in time),
and the source signature. By source signature, we mean the spectral content of the wavefield
leaving the source (the “wavelet in the water”, in other words). This is different from the reflected
waveforms read from the seismograph (in 1D, 2D, and 3D). It is important to emphasize this,
because common practice in exploration seismology is to compute the synthetic seismogram by
convolving the wavelet with the reflection coefficient sequence.

The 2D wave-equation with a vertically-varying medium velocity c(z) is:

(
∂2

∂x2
+

∂2

∂z2
− 1

c2(z)

∂2

∂t2

)
φ(x, z, t) = δ(x− xs)δ(z − zs)A(t), (1)

where (xs, zs) is the spatial location of the source, and A(t) is the source signature (or wavelet).

We can apply a Fourier transform
∞∫

−∞

dxe−ikx to both sides of the equation, at which point, defining

φ̃(k, z, t) =
∞∫

−∞

dxe−ikxφ(x, z, t), we have:

(
∂2

∂z2
− 1

c2(z)

∂2

∂t2
− k2

)
φ̃(k, z, t) = e−ikxsδ(z − zs)A(t).

If we define P (z, t) = φ̃(0, z, t) =
∞∫

−∞

dxφ(x, z, t), i.e., summing the readings from all receivers

together, we have: (
∂2

∂z2
− 1

c2(z)

∂2

∂t2

)
P (z, t) = δ(z − zs)A(t).
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P (z, t), the result of summing the wave-field over all receivers, exactly satisfies the 1D wave-equation
(2). The solution, as derived in the next section and expressed in (3) and (4), for a homogeneous
medium c(z) ≡ c0, would therefore be:

P (z, t) = − 2

c0

t−|z−zs|/c0∫

−∞

duA(u).

This “summing over receivers” logic has been described by many authors; it seems many have come
to similar results using different approaches. This simple sum, transforming the problem to 1D if
the Earth has no lateral variations, eliminates spherical divergence and the angle-dependency of
the amplitude of the seismic events.

For several simple models without lateral variation, the analytic solutions can be derived by match-
ing the boundary conditions. They are very useful in quality control. A straightforward quality
control procedure that would validate the choice of modelling parameters: 4x, 4z, 4t, and source
signature is to try them on the 1D model, sum the recording from all receivers as we have just
discussed, then compared with analytic 1D solutions. We begin with a derivation of several such
solutions.

2.1 Solution for homogeneous medium

Let us illustrate the wavelet issue in the simplest 1D case, where a source is ignited at z = zs,

(
∂2

∂z2
− 1

c(z)2
∂2

∂t2

)
P (z, t) = δ(z − zs)A(t), (2)

where A(t) is the source term expressed in the time domain. Because the source explodes at z = zs,
if the medium is homogeneous water: c(z) ≡ c0, let’s assume the form of the solution is causal:

P (z, t) = f (t− |z − zs|/c0) . (3)

Our solution (3) expresses a wave propagating outward from the source location z = zs with velocity
c0. A recording device (phone) at any fixed location z = z0 will record a time series prescribed
by f (t− |z0 − zs|/c0). So it will record a single event in the form f(t) shifted by the amount
|z0 − zs|/c0. If the phone will record the waveform of the source, f(t) should be proportional to
A(t). If this is not true, that means a phone will never record the form of the source no matter
how close it is to the source, contrary to our intuitive concepts.

Obviously, for whatever f , our solution (3) satisfies the wave-equation (2) when z 6= zs, since for
this case the wave-equation is homogeneous.

Let’s then consider the source point, following the usual technique dealing with the singularity
δ(z − zs) at z = zs, we consider the integral of equation (2) across the following two points
z = zs − ε and z = zs + ε,

zs+ε∫

zs−ε

dz

(
∂2

∂z2
− 1

c20

∂2

∂t2

)
P (z, t) =

zs+ε∫

zs−ε

dzδ(z − zs)A(t) = A(t).
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Let us take a close look at the left-hand-side of the equation above: if ε is approximately 0, the

second term
zs+ε∫
zs−ε

dz ∂2

∂t2
P (z, t) will approach 0 if f is continuous. But the first term will produce:

zs+ε∫

zs−ε

dz
∂2

∂z2
P (z, t) =

[
∂

∂z
f(t− |z − zs|/c0)

]z=zs+ε

z=zs−ε

= f ′(t− ε/c0)
(−1

c0
− 1

c0

)
−→ − 2

c0
f ′(t),

so we have the following relation:

− 2

c0
f ′(t) = A(t).

This demonstrates that the general solution of the equation above is:

f(t) = C − c0
2

t∫

−∞

A(u)du,

where C is an arbitrary constant. Further, considering the boundary condition at t = −∞, we
know that before the source is ignited, the receiver shouldn’t receive any waveform. So we have:
f(−∞) = 0, and hence C = 0 in the equation above. The physical solution of f would be:

f(t) = −c0
2

t∫

−∞

A(u)du. (4)

A special situation appears when the source term in equation (2) is A(t) = δ(t), in which case we
have:

f(t) = −c0
2

t∫

−∞

A(u)du = −c0
2

t∫

−∞

δ(u)du = −c0
2
H(t).

We next substitute the solution above in (3), and find the causal Green’s function for homogeneous
medium in 1D (Morse and Feshbach, 1953, p. 843, equation (7.3.16)):

G0(z, zs, t) = −c0
2
H(t− |z − zs|/c0).

2.2 Solution for model with 1 reflector

We next repeat this process for a model with a little more complexity:

c(z) =

{
c0 z ≤ z1
c1 z > z1

(5)

where z1 is the depth of the only reflector in the model. We assume the source located strictly
inside the first medium: z1 > zs. Then

P (z, t) =

{
f (t− |z − zs|/c0) +R ∗ f (t− (2z1 − z − zs)/c0) z < z1
T ∗ f(t− (z1 − zs)/c0 + (z − z1)/c1) z > z1

, (6)
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where R = (c1− c0)/(c1 + c0) is the reflection coefficient of the single interface in the medium, and
T = 1 +R = 2c1/(c1 + c0) is the corresponding transmission coefficient. The solution expressed in
equation (6) satisfies the wave-equation (2) in the medium defined by equation (5).

For the first layer, z < z1, the solution consists of 2 parts: the direct wave f (t− |z − zs|/c0) and
reflected wave R ∗ f (t− |z + z1 − zs|/c0). The direct wave will satisfy the inhomogeneous wave-
equation. The reflected wave satisfy the corresponding homogeneous wave-equation. Introduction
of the reflected wave will make sure the sum will satisfy the inhomogeneous wave-equation, just as
the direct-wave alone.

For the second layer, the source is outside the medium, z1 > zs, and the wave-equation in this
medium is homogeneous. That’s why the transmitted wave in the form T ∗ f(t− |z1− zs|/c0 +(z−
z1)/c1) will satisfy the wave-equation in this layer.

The waveform and amplitude of the reflected and transmitted waves are determined by matching
the boundary condition at z = z1, the continuity of the wave-field P (z, t)|z=z1 and its derivative
over z, ∂P (z, t)/∂z|z=z1 . It’s easy to prove that the solution expressed in equation (6) satisfies the
boundary condition (continuity of wave-field and its derivative over z) for all time.

2.3 Solution for model with 2 reflectors

For a model with 2 layers:

c(z) =





c0 z ≤ z1
c1 z2 > z > z1
c2 z > z2

, (7)

where z1 is the depth of the first reflector, and z2 is the depth of the second reflector. We assume
the source is located strictly inside the first medium: z1 > zs. Following the discussions above, we

,

can write the solution in the first medium (z < z1):

P (z, t) = f (t− |z − zs|/c0) +R1f (t− (2z1 − z − zs)/c0)

+R′
2f (t− (2z1 − z − zs)/c0 + 2(z2 − z1)/c1)

+

∞∑

n=1

R′
2 [−R1R2]nf (t− (2z1 − z − zs)/c0 + 2(n+ 1)(z2 − z1)/c1) ,

(8)

where R1 = c1−c0
c1+c0

is the reflection coefficient of the first reflector, R2 = c2−c1
c2+c1

, is the reflection

coefficient of the second reflector, and R′
2 = R2 ∗ (1−R2

1) is the product of R2 and the cumulative
transmission lose of the layers above.
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In the solution above, the first term is the direct wave, the second and third terms are primaries from
the first and second reflectors, respectively. The remaining terms are internal multiples bouncing
between the only 2 reflectors in the model.

2.4 Solution for model with free-surface and 1 reflector

Let’s consider a problem with free-surface:

c(z) =





0 z < zf

c0 zf ≤ z < z1
c1 z > z1

(9)

where zf is the depth of the free-surface, and z1 is the depth of the only reflector below the
free-surface. Assuming that the source is located between the free-surface and the water-bottom:
zf < zs < z1, we simply write the solution down:

P (z, t) =





0 z ≤ zf

φini +
∞∑

n=1

{
φ↑↑n + φ↑↓n + φ↓↑n + φ↓↓n

}
zf < z < z1

∞∑
n=1

{
ψ↑

n + ψ↓
n

}
z > z1

, (10)

where various terms are defined in the table below. This solution satisfies the inhomogeneous
wave-equation in water, and the homogeneous wave-equation below the water bottom.

φini = f
(
t− |z−zs|

c0

)
− f

(
t− z−2zf+zs

c0

)
λn = 2n(z1 − zf ) + zs, µn = λn − 2 (zs − zf )

φ↑↑n = (−R)nf
(
t− λn−z

c0

)
φ↓↑n = −(−R)nf

(
t− µn−z

c0

)

φ↑↓n = −(−R)nf
(
t− λn+z−2zf

c0

)
φ↓↓n = (−R)nf

(
t− µn+z−2zf

c0

)

ψ↑
n = (T/R) ∗ (−R)nf

(
t− λn−z1

c0
− z−z1

c1

)
ψ↓

n = −(T/R) ∗ (−R)nf
(
t− µn−z1

c0
− z−z1

c1

)

The free-surface boundary-condition: P (z, t)|z=0 ≡ 0 is satisfied by the following cancellations:

(1) 2 terms in φini:
[
f(t− |z−zs|

c0
)− f(t− z+zs−2zf

c0
)
]
z=zf

= 0. (2), for n = 1, 2, · · · , we have:
[
φ↑↑n + φ↑↓n

]
z=zf

= 0,
[
φ↓↑n + φ↓↓n

]
z=zf

= 0.

It is somewhat tedious to verify the boundary condition at level z = z1 because there are a large
number of events. Some level of efficiency derives from classifying them into groups, in which each
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group contains an incident wave, a reflection, and a transmission (the groups are displayed in the
table below), and noting that each group share a same common amplitude factor (denoted as A0)
and arrival time at the interface (denoted as θ0).

Group A0 θ0 ∗ c0{
φ↑↓n−1, φ

↑↑
n , ψ

↑
n

}
−(−R)n−1 2(n− 1)(z1 − zf ) + z1 + zs − 2zf{

φ↓↓n−1, φ
↓↑
n , ψ

↓
n

}
(−R)n−1 2(n− 1)(z1 − zf ) + z1 − zs,

where the proofs of the phase are:

λn−1 + z1 − 2zf = 2(n− 1)(z1 − zf ) + z1 + zs − 2zf = λn − z1
µn−1 + z1 − 2zf = 2(n− 1)(z1 − zf ) + z1 − zs = µn − z1.

By φ↑↓0 , we mean the second part of φini: φ↑↓0
def
= −f

(
t− z−2zf+zs

c0

)
. By φ↓↓0 , we mean the down-

going portion of the first half of φini: φ↓↓0 = f
(
t− z−zs

c0

)
(which holds only for z > zs).

With the notations above, we can generally express each group as:

Incidence Reflection Transmission

A0f
(
t− θ0 − z−z1

c0

)
A0Rf

(
t− θ0 + z−z1

c0

)
A0Tf

(
t− θ0 − z−z1

c1

)

At the boundary z = z1, the continuity of the wave-field and its derivative over z is proved by:

1 +R = T =⇒ {Incidence + Reflection}z=z−1
= {Transmission}z=z+

1
,

− 1
c0

+ R
c0

= − T
c1

=⇒ ∂
∂z {Incidence + Reflection}z=z−1

= ∂
∂z {Transmission}z=z+

1
.

In marine exploration, the receiver-line is normally below the source: zg > zs. In this case, the
total recorded wave-field from the receivers can be expressed as

P (zg, t) =f

(
t− zg − zs

c0

)
− f

(
t− zg − 2zf + zs

c0

)
+

∞∑

n=1

{
φ↑↑n + φ↑↓n + φ↓↑n + φ↓↓n

}
z=zg

=f(t− t0)− f(t− [t0 + τs])

+
∞∑

n=1

(−R)n {f(t− tn)− f(t− [tn + τs])− f(t− [tn + τg]) + f(t− [tn + τs + τg])} ,

where τs = 2(zs − zf )/c0, τg = 2(zg − zf )/c0, tn =
zg−zs

c0
+ 2n

z1−zf

c0
.

We note that for the direct-wave (the portion with 0 power of R), the ghosting process resembles
a “finite-difference”, applied once. But for reflected wave information (the portion with non-zero
power of R), the ghosting process looks like a “finite-difference” applied twice, with unequal steps
(first with step τs, then with τg), as described by:

If we define operator : ℘af(t) = f(t)− f(t− a)
We have : [℘τg [℘τs ]] f(t− tn) =

{f(t− tn)− f(t− [tn + τs])− f(t− [tn + τg]) + f(t− [tn + τs + τg])} .

If the step becomes very small, the finite-difference operation will approach a derivative operation,
and the “finite-difference twice” operation similar to taking the derivative twice. For example, if
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the original wavelet is a Gaussian, the ghosting effect will make each event look like a Ricker (the
second-order derivative of a Gaussian).

Without ghosts, each event has the form f(t− tn), where n = 0 is for a primary, and n = 1 is for
the first order free-surface multiple. But the presence of the source and receiver ghost, changes its
form to f(t− tn)− f(t− tn − τg)− f(t− tn − τs) + f(t− tn − τg − τs).
We next study the change in its frequency content. Defining g(t) = f(t − tn), and its spectrum
G̃(ω), we have

f(t− tn) = g(t)←→ G̃(ω)

f(t− tn)− f(t− tn − τg)− f(t− tn − τs) + f(t− tn − τg − τs)
= g(t)− g(t− τg)− g(t− τs) + g(t− τg − τs)
←→ G̃(ω)

(
1− e−iωτg

) (
1− e−iωτs

)
.

The spectrum of each event is multiplied by
(
1− e−iωτg

) (
1− e−iωτs

)
. Because both

(
1− e−iωτg

)

and
(
1− e−iωτs

)
approach 0 linearly when ω → 0, multiplying

(
1− e−iωτg

) (
1− e−iωτs

)
will cause

the spectrum to attenuate quadratically when ω → 0, just as in the previous argument.

For this simple model, after the direct wave, the reflection and its multiples are periodic. If we

define: un(t) =
{
φ↑↑n + φ↑↓n + φ↓↑n + φ↓↓n

}
, we have that un(t) = −R∗un(t−2(z1−zf )), in which the

period is 2(z1 − zf ). This result can be used to verify the quality of the finite-difference modelling.

3 Finite-difference approximation of the wave-equation

Let us next generate the finite difference approximations that will be used for numerical modelling,
in particular demonstrating the negative effect of incorrect implementation of the source. Consider
the wave-equation for a constant-density acoustic medium:

(
∂2

∂x2
+

∂2

∂z2
− 1

c2(x, z)

∂2

∂t2

)
φ(x, z, t) = δ(x)δ(z − zs)A(t), (11)

and the finite-difference approximation of the left-hand-side (?, p. 836, equation (8)):

P (m4x, n4z, (l + 1)4t)− (2− 5γ2)P (m4x, n4z, l4t) + P (m4x, n4z, (l − 1)4t)

− 4γ2

3

[
P ((m+ 1)4x, n4z, l4t) + P ((m− 1)4x, n4z, l4t)

+P (m4x, (n+ 1)4z, l4t) + P (m4x, (n− 1)4z, l4t)

]

+
γ2

12

[
P ((m+ 2)4x, n4z, l4t) + P ((m− 2)4x, n4z, l4t)

+P (m4x, (n+ 2)4z, l4t) + P (m4x, (n− 2)4z, l4t)

]
,

(12)

where m, n, and l are the indices of the wave-field in x, z, and t, respectively, γ = c(x, z) 4t
4x , and

the digitization interval in x and z direction are set to be equal, 4x = 4z.
If the source term of equation (11) is zero, equation (12) can be used to calculate the future wave-
field P (m4x, n4z, (l+ 1)4t) from the neighboring grids from current time l4t and previous time
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(l − 1)4t.

P (m4x, n4z, (l + 1)4t) = (2− 5γ2)P (m4x, n4z, l4t)− P (m4x, n4z, (l − 1)4t)

+
4γ2

3

[
P ((m+ 1)4x, n4z, l4t) + P ((m− 1)4x, n4z, l4t)

+P (m4x, (n+ 1)4z, l4t) + P (m4x, (n− 1)4z, l4t)

]

− γ2

12

[
P ((m+ 2)4x, n4z, l4t) + P ((m− 2)4x, n4z, l4t)

+P (m4x, (n+ 2)4z, l4t) + P (m4x, (n− 2)4z, l4t)

]
.

(13)

Next, we illustrate the source issue by testing the finite difference modelling code from a third-party
package. In this case, the only parameters we used as input are listed in fig 1. From its documenta-
tion, we know that it implements the Ricker wavelet (the second derivative of Gaussian). We only
specify the geological model and spatial sampling rate: 4x = 4z = 5(m), and give the program
the maximal freedom to determine the other critical parameters such as peak frequency, sampling
rate in time: 4t. Although the 3rd-party program applies transparent boundary conditions to

Figure 1: The geological model and modelling parameter for a 3rd-party finite-difference program

minimize the boundary artifacts, we have avoided that issue entirely by making the model suf-
ficiently large (width=15000m, height=5000m) that the receivers will not receive the unwanted
boundary-artifacts from the top, bottom, left of right edges. From figure 2, we see that although

Figure 2: Left: the finite-difference modelling results using the 3rd-party code and the model displayed in
Figure 5. The vertical axis is the index of samples, it can be linear transformed to time. Right:
the sum of the recordings from all the receivers in the left.

the linear travel time of the direct wave, and the hyperbolic arrival-time of various reflections are
accurate, the sum over all receivers shows some unwanted phenomena: the wave-form of the second
reflection deviates significantly from the integral of the wavelet (the first derivative of Gaussian).
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The positive portion of the second reflector is significantly smaller than the negative half∗.

The example above illustrates the importance of implementing the source signature accurately to
the waveform modelling. We next propose a means for accurate implementation of the source in
arbitrary locations.

We assume that after a certain time TM , the source has become weak enough to be ignored. After
TM , the wave-equation (1) can be considered homogeneous, hence we may use the homogeneous
scheme in equation (12) to propagate to the next time-step. All we need is to have the wave-field
at time TM and TM −4t. If we assume the medium is homogeneous within a certain distance from
the source, and TM is small enough that outside a circular region (denoted as O), the energy of the
wave can be neglected, we can calculate the analytic wave-field inside O, once at the moment TM ,
and once at the moment TM −4t.
Figure 3 shows two analytic wave-fields using equation (9) from ? † and wavelet shown in figure 4.

Compared with straightforward digitization of the source, one advantage of implementing the source
as pre-calculated analytic wave-fields is that the source can be emplaced very flexibly in space, ei-
ther coincident with the grid or anywhere in between. In computing the pre-calculated wave-field,
we only need to know its distance to each grid. If the source is implemented by straightforward
digitization, any source deviating from the grid point will be invisible to the finite-difference for-
malism.

Figure 3: The pre-calculated wave-fields at TM −4t and TM

We apply the pre-calculated wave-fields displayed in figure 3 to the geological model displayed in
figure 4, using a wavelet as displayed in figure 4. The other parameters are: 4x = 4z = 5(m),
4t = 0.5(ms). Equation (13) was applied to update the wave-fields at the next moment. The
final results were displayed in figure 5. We next apply the quality control procedure. First all

∗The first derivative of Gaussian is an odd function, its positive portion should have the same shape and size as
the negative portion.

†“The F (ω) in equation (9) of ? should be considered as the Fourier transform of A(t) (our source signature)”
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Figure 4: Left: the geological model. Right: source signature (wavelet).

Figure 5: Finite-difference modelling results starting from analytic wave-fields at t = 0.2s

traces in the rightmost panel in figure 5 are summed together to form a single trace, as shown by
the red curve in figure 6. The desired “actual” sum can be calculated from the reflection data for
the models with 2 layers to have: equation (8). Here only the 2 primary reflections are available
(corresponding to the second and third term in equation (6)), hence we have the quality control
formula:

R1f (t− t1) +R′
2f (t− t2) +R′

3f(t− t3)
5

(14)

where

f(t) = −c0
2

t∫

−∞

A(u)du = −c0
2

a

4

√
a

π
te−at2/4

t1 = (2z1 − z − zs)/c0, t2− (2z1 − z − zs)/c0 + 2(z2 − z1)/c1, t3− (2z1 − z − zs)/c0 + 4(z2 − z1)/c1
R1 =

c1 − c0
c1 + c0

, R2 =
c2 − c1
c2 + c1

, R3 =
c3 − c2
c3 + c2

, R′
2 =

(
1−R2

1

)
R2, R′

3 = R′
2 ∗ (−R1R2)

From figure 6, we feel confident about the implementation and frequency content of the wavelet,
4x, 4z, and 4t since the sum of all receivers perfectly recover the 1D experiment.

Figure 7 compares different digitized “interpretations” of z1, which will affect the result of the
analytic solution (equation 14). The velocity model is stored in a 2-dimensional array. We illustrate
the issue of interpretation with the following example. We ignore the dimension of the array
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Figure 6: Comparison of the sum over all receivers from the finite-difference data with the analytic solution
(equation-14). The first curve is almost completely covered by the second, they agree with each
other very well.

Figure 7: Comparison of the analytic solutions (equation-14) using different interpretation of z1. The
interpretation using z1 = 997.5(m) agrees with finite-difference data. This implies that the
interface in the velocity should be interpreted as in the middle between discontinuous values.

corresponding to the x-direction, and only consider the dimension corresponding to depth, denoting
the array as c[i], i = 0, 1, 2, · · · .
The physical meaning of c[i] is the velocity at depth i∗4z. In this case we have, c[0] = c[1] = · · · =
c[199] = c0, c[200] = c[201] = · · · = c1, so we know the velocity at 995m is c0, and the velocity
at 1000m is c1. Where, then, should the interface be? A natural answer would be: in the middle
of 995m and 1000m, or equivalently at 997.5m. This is emphasized here because it is natural to
interpret the depth of the reflector either as 995m or as 1000m.

This is important when it comes to modelling the free-surface. If we define the grid points as 0, 4z,
24z, · · · , the free-surface can only be defined somewhere in the middle of the grids. As a result,
we cannot define a free-surface at 0m, contrary to one of the most commonly used conventions
in our geography and geology. We test the free-surface modelling with the geological model and

Figure 8: The geological model and modelling parameters
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Figure 9: 2 different interpretation lead to slightly different geometries for the position of the image source.
Left: correct interpretation zf = 2.5m. Right: wrong interpretation zf = 0m

modelling parameters displayed in figure 8. Notice that the interpretation of the depth of the
free-surface is at 2.5m (the left half of figure 9 contains greater detail). It is all too easy to use the
wrong interpretation, which is shown in the right half of figure 9; for these two interpretations, the
pre-calculated wave-fields look very similar, as shown in figure 10, as do the final modelling results
in figure 11. However, upon summations of all traces together to recover 1D experiment (i.e., our

Figure 10: 2 sets of pre-calculated wave-fields computed using different interpretations. These 2 sets looked
very similar

Figure 11: Comparison of modelling results using different interpretations, the left uses the correct in-
terpretation, the right uses wrong interpretation. These 2 sets looked very similar and the
difference are subtle.

quality control methodology), decidedly non-negligible differences arise (see figure 12).

We take this as evidence of (1) the importance of sensitive quality control methods for validation of
modelled waveform amplitudes, and (2) the importance (demonstrated via (1)!) of a correct digital
assignment of depths to the model.
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Figure 12: Comparison of the sum of the all traces in the shot gather. These 2 sums looked very differ-
ent. Top, the free-surface is correctly interpreted. Bottom, the free-surface depth is interpreted
2.5(m) away from its true location. It’s very obvious that the error caused by wrong interpre-
tation can be easily caught by this quality control method although the shot gathers looks very
similar

4 Conclusion

As we develop direct non-linear imaging and target identification methods based on the inverse
scattering series (as well as other series based processing methods), which are ambitious in the
sense of data waveform interrogation, tools for testing and validation of these methods become
increasingly important. Specifically, as methods are extended to multiple dimensions, we require
forward modelling tools that provide a wave-accurate set of input synthetic data. This paper
outlines some issues encountered when utilizing finite difference schemes to provide such tools, and
some strategies for overcoming them.

Importantly, we discuss means by which the source signature can be implemented accurately in
an arbitrary position in finite difference modelling. We illustrate the importance of the physical
meaning of a discontinuous medium in finite difference formalism, as a jump in the middle of
discontinuous numerical values. Finally, we demonstrate that summing all traces together can
serve as a sensitive method for quality control of the choice of finite-difference parameters.
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A note on data modelling using the Cagniard-de Hoop method

Jingfeng Zhang and Arthur B. Weglein

Abstract

Data modelling for a 1D layered medium using the Cagniard-de Hoop method is discussed.
In particular a 1D acoustic model and data generated and then used in a deghosting algorithm.

1 Introduction and motivation

Data forward modelling is a very important topic in seismic exploration. It is crucial for new
algorithm validation and forward model-matching techniques. Data with higher quality help to
more correctly evaluate the effectiveness of the algorithm and give better model-matching prediction
results. For most conventional seismic processing techniques, arrival time of a seismic event is much
more important than the amplitude. Thus, the modelled data fidelity might be held to a lower
standard. However, there are some (recently developed) algorithms that fully employ the amplitude
information as well as the arrival time of the signal. In that case, the fidelity of the synthetic data
is more important in order to give better assessment of the algorithms. Some examples of those
algorithms are deghosting (Weglein et al., 2002; Zhang and Weglein, 2005b), inverse scattering
series (ISS) based free surface multiple removal (Weglein et al., 1997), internal multiple attenuation
(Weglein et al., 1997) and elimination (Ramirez and Weglein, 2005), imaging with reference medium
velocity (Shaw et al., 2004; Liu et al., 2005; Innanen and Weglein, 2003) and nonlinear inversion
techniques (Zhang and Weglein, 2005a). The above listed algorithms work like a chain of tasks in
the sense that the performance of the latter ones will be affected by the former ones. And each
algorithm is fully wave-theoretic, requiring wavefield data, synthetic or otherwise, to proceed.

There are many methods to generate seismic data. For complex media, where an analytic solution
is not available, methods such as finite difference and finite element are the usual choice. For
1D layered media, where analytic solutions can be found, methods such as reflectivity (Kennett,
1983) and Cagniard-de Hoop (de Hoop and van der Hijden, 1983; Aki and Richards, 2002) have
the opportunity to generate data either more efficiently or with better quality. The advantages
and disadvantages of each method will not be elaborated in this paper. For the validation of the
deghosting algorithm, the Cagniard-de Hoop method is the best choice.

First, data generated in a 1D medium will suffice, so the major drawback of the Cagniard-de Hoop
method is not relevant here. Second, we may benefit from a powerful property of the method: the
ability to calculate individual wavefield events. The first step in Extinction theorem deghosting is
receiver side deghosting; after that, source side deghosting is performed. As in any other numerical
processing routine, quality control of the results of each step is worthwhile. For instance, after
receiver side deghosting, the data are supposed to contain the signal and its source side ghost.
It would be valuable to have the exact results for comparison. Based on generalized ray theory,
Cagniard-de Hoop method enables us to calculate the field due to each specific event. So it is
straightforward to calculate the data that only contain the signal and the source ghost. Finite
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difference methods, on the other hand, don’t have this ability. The last reason is that, at least
for a one parameter (velocity) 1D acoustic medium, the Cagniard-de Hoop method can produce
“perfect” data in the sense that the wavefield is calculated through an integration of a regular
integrand over a finite range. Just like the numerical integration of sin(x) from 0 to π, we can get
the result as accurate as we want, up to the limit of the computer.

In the following section, after some introductory words about data modelling for 1D layered media,
the analytic Green’s function in space-time domain will be listed directly for a one interface model
and a line source. Then two comments are made on the numerical evaluations. Finally, we present
the data generated for a simple acoustic model.

2 Theory

The 2D acoustic constant density wave equation is

∇2P (x, z, xs, zs, t)−
1

c2
∂2

∂t2
P (x, z, xs, zs, t) = A(t)δ(x− xs)δ(z − zs), (1)

where A(t) is the source wavelet and we assume the line source is at position (xs, zs) and goes off
at t = 0. The solution can be easily obtained if we can solve the corresponding Green’s function
equation:

∇2G(x, z, xs, zs, t)−
1

c2
∂2

∂t2
G(x, z, xs, zs, t) = δ(t)δ(x− xs)δ(z − zs), (2)

since

P (x, z, xs, zs, t) =

∫ t

0
A(t− τ)G(x, z, xs, zs, τ)dτ. (3)

So now the problem is how to solve Eq.2. One way is to perform Fourier transforms over x and t
on Eq.2, so that

d2

dz2
G(kx, z, xs, zs, ω) + q2G(kx, z, xs, zs, ω) = δ(z − zs), (4)

where q2 = ω2

c2
− k2

x. Clearly Eq.4 is essentially a 1D wave equation. Its analytical solution
G(kx, z, xs, zs, ω) is not difficult to find for a simple 1D layered medium. We can obtainG(x, z, xs, zs, t)
through inverse Fourier transform over ω and kx. This is essentially the way that the Reflectivity
method works. The associated difficulty of this method relates to the infinite integral range and
irregular integrand.

Instead of performing Fourier transform over x and t on Eq.2, Cagniard-de Hoop method performs
a Laplace transform over t and a Fourier transform over x:

∫ ∞

−∞
e−ikxxdx

∫ ∞

0
e−stdt, (5)

where s is real and positive, then Eq.2 becomes

∂2

∂z2
G(kx, z, s)− n2G(kx, z, s) = δ(z − zs), (6)
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where n2 = k2
x + s2

c2
and for convenience, we have omitted variables xs and zs in G. Once we find

the solution for G(kx, z, s), we have

G(x, z, s) =
1

2π

∫ ∞

−∞
G(kx, z, s)e

ikxxdkx. (7)

Until now, this procedure is very similar with the Reflectivity method, except the fact that s instead
of −iω is being used. Noticing that

G(x, z, s) =

∫ ∞

0
G(x, z, t)e−stdt, (8)

The Cagniard-de Hoop method analytically manipulates Eq.7 into the form of Eq.8 and recognizes
the expression for G(x, z, t) by just looking at the new transformed integrand! The whole work is
done without actually carrying out any numerical integrations! Cagniard proved that the obtained
solution is in fact the physical solution we are looking for. The derivation details have been given
in literature and will be omitted here. Instead, we will directly list the solutions for a one interface
constant density acoustic model with velocities c0 and c1 above and below the reflector (at zd)
respectively.

The direct wave Green’s function is

G(x, z, t) =
−1

2π

H(t−R0/c0)√
t2 −R2

0/c
2
0

; (9)

the pre-critical reflection Green’s function is

G(x, z, t) =
−1

2π
ReP̀ Ṕ

H(t−R/c0)√
t2 −R2/c20

; (10)

and the post-critical reflection Green’s function (if it exists) is

G(x, z, t) =
−1

2π
ImP̀ Ṕ

H(t− th)−H(t−R/c0)√
R2/c20 − t2

+
−1

2π
ReP̀ Ṕ

H(t−R/c0)√
t2 −R2/c20

, (11)

where

R0 =
√
x2 + (z − zs)2;

th =
x

c1
+ |z + zs − 2zd|

√
c−2
0 − c−2

1 ;

P̀ Ṕ =
η0 − η1

η0 + η1
; (12)

ηi =
√
c−2
i − p2,where i = 0, or 1; (13)

p =





xt−|z+zs−2zd|
√

R2/c20−t2

R2 t ≤ R
c0

xt+i|z+zs−2zd|
√

t2−R2/c20
R2 t ≥ R

c0

; (14)

R =
√
x2 + (z + zs − 2zd)2.

The above results can be easily generalized to the case that the free surface is present and multi-
layer medium. P̀ Ṕ is the plane wave reflection coefficient for compressional wave and th is the
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arrival time of the head wave. There are two comments that we would like to make in this note.
The first one is that, in order to perform the convolution in Eq.3 properly, it is convenient to use
integration by parts to deal with the spike in the above Green’s functions. For example, we can
calculate the direct wave in the following way:

P (x, z, xs, zs, t) =

∫ t

0
A(t− τ)G(x, z, xs, zs, τ)dτ

=
−1

2π

∫ t

R0
c0

A(t− τ) 1√
τ2 −R2

0/c
2
0

dτ

=
−1

2π

∫ t

R0
c0

A(t− τ) 1

τ
d
√
τ2 −R2

0/c
2
0

=
−1

2π
A(t− τ) 1

τ

√
τ2 −R2

0/c
2
0

∣∣∣∣∣

t

τ=
R0
c0

−−1

2π

∫ t

R0
c0

√
τ2 −R2

0/c
2
0

[−A(t− τ)
τ2

+
1

τ
A(t− τ)

]
dτ. (15)

The above integration is regular and easy to calculate. For the first term in Eq.11, we might just
need to change variable t to R

c0
sin(θ). The second point we would like to make relates to a mistake

we made before. Variable η in Eq.13 is complex in general. It seems convenient to calculate its
value using the the square root subroutine for complex number in Fortran or C. However, this
might lead to a mistake. The reason is that, for example, when the argument under the square root
is negative pure real, there are two possible values for η. The intrinsic subroutine might choose the
positive one. This is unfortunately not correct in this case. Actually, we have to use the negative
pure imaginary value. The argument is that the values of η and p are supposed to be continuous
with continuously increasing t. When t changing from t ≤ R

c0
to t ≥ R

c0
, p picks up a (small) positive

imaginary value which causes η having a negative (might not be small) imaginary part. Obviously,
in order to make η change continuously, we need to make sure that the pure negative value is used
for η when p is real. The consequence of not doing so will be illustrated in the next section.

3 Examples

In this section, we present the data generated using Cagniard-de Hoop method for an acoustic
model (Fig.1). The model has a free surface at z = 0 and a reflector at 300m below which is a
homogeneous half space. The source is at (0, 7m) and the cable is at 9m. We use a Ricker wavelet
with a dominant frequency of 25Hz (Fig.2).

Primaries and their ghosts at pre-critical (Fig.3) and post-critical (Fig.4) offsets are compared with
each other. Not surprisingly, the primary arrives first and its source-receiver ghost arrives the
latest. Also the summation of primary and its ghosts tends to have more polarity changes than
any of its components.

The data for (0, 4.5s) and (0, 5000m) are generated (Fig.5). The data contain primaries, one to
fourth order free surface multiples and their ghosts. The direct wave and its ghost have not been
included. The data generated without taking care of the sign of η is presented in Fig.6. It seems
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that there is no big difference. But only the data in Fig.5 are the real physical wave field. Very
good deghosting results are obtained when using the correct data set (Fig.7). The reflections at the
right boundary in Fig.7 are due to limited offset aperture. Problematic results are produced (Fig.8)
using the data in Fig.6. Besides the boundary reflections, there are also some artifacts reflections
arise where headwaves start to appear. These unexpected artifacts are the consequences of using
data in Fig.6.
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Figure 1: Constant density acoustic model.
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Figure 6: Total incorrect data generated.
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Figure 7: Deghosting result using correct data in Fig.5.
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Figure 8: Deghosting result using incorrect data in Fig.6.
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Updates to internal and free surface multiple coding projects

Sam T. Kaplan, Kristopher A. Innanen and Arthur B. Weglein

Abstract

We outline changes to the implementation of the 2D M-OSRP internal multiple attenuation
(IMA) algorithm, and introduce an implementation of the 2D free surface multiple elimination
(FSME) algorithm. We use the IMA algorithm’s need for only the non-evanescent portion of the
wavefield to minimize its required computer memory. In addition, we update our load-balancing
scheme for the IMA algorithm by finding a smaller subset of the algorithm to use as a basis for
computation. The 2D FSME algorithm is presented (1) for when the distance between adjacent
shots is equal to the distance between adjacent geophones, and (2) for the case in which these
distances differ.

1 Introduction

The purpose of this short note is two-fold. First, we outline optimizations and changes made to
the M-OSRP internal multiple attenuation (IMA) algorithm (Kaplan et al., 2004), and second
we introduce the M-OSRP free surface multiple elimination (FSME) algorithm. Both of these
computer programmes are the end products of M-OSRP’s ongoing coding project. Our goals are
to both deliver software for application to real data (e.g., Kaplan et al., 2005b), and for use as a
basis of ongoing research (e.g., Kaplan and Innanen, 2005).

In addition to the IMA algorithm announced at the 2004 M-OSRP annual meeting, we are currently
working on and testing a separate IMA algorithm for large distributed computing systems (Kaplan
et al., 2005a). Our hope is that this will pave the way for three dimensional implementations of the
algorithm. None-the-less, there are updates to the 2004 two dimensional algorithm that we wish
to share, and do so in this note. The changes allow for more efficient use of computer memory, and
better load balancing on distributed systems.

Our two dimensional FSME code implements the algorithm presented in Weglein et al. (2003). Like
its IMA counter-part, it is designed to run on distributed computing systems. The FSME algorithm
is most readily understood when the lateral distance between shots is equal to the lateral distance
between receivers. Here, we note our method for allowing shot spacing and receiver spacing to
differ. This is particularly important for real data applications.

2 Internal multiple attenuation code optimizations

We made two notable changes to the M-OSRP IMA code since its release shortly after the 2004
annual meeting. First, we take advantage of the algorithm’s requirement for only the non-evanescent
portion of the wavefield to reduce its memory foot-print; and second, we use an analysis of the IMA
equations that is more suitable for their load-balancing on a distributed system.
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The first change, reduction in the memory foot-print of the algorithm, we find through simple
analysis of the dispersion relation. We write the IMA algorithm in two dimensions:

b3IM (kgx, ksx, ω) =
1

(2π)2

∫ ∞

−∞
ρ(k1, k2, kgx, ksx, ω)dk1dk2 (1)

where

ρ(k1, k2, kgx, ksx, ω) =

∫ ∞

−∞
b1(k1, k2, z1)e

−i(k1z+k2z)z1

[∫ ∞

z1+ε
b1(kgx, k1, z2)e

i(kgz+k1z)z2dz2

]

·
[∫

z1+ε
b1(k2, ksx, z2)e

i(k2z+ksz)z2dz2

]
dz1 (2)

In equations (1) and (2), b3IM is the internal multiple attenuator with dimensions of receiver- and
source-side wavenumbers (kgx and ksx) and frequency ω, and b1 is un-collapsed Stolt (constant
wavespeed) migrated data where z1 is pseudo-depth. We relate pseudo-depth to two way travel
time t using constant wavespeed c0 (usually waterspeed) such that z1 = t/(2c0). We define ε to
be some small positive constant that ensures that b3IM contains only internal multiples, and does
not also contain primary events. Finally, we note that the dispersion relation, the central tool
of our ensuing analysis, relates the vertical wavenumbers k1z, k2z, kgz and ksz to their horizontal
counter-parts. In particular, we have

k1z = − sgn(ω)

√
ω2

c20
− k2

1 k2z = − sgn(ω)

√
ω2

c20
− k2

2

kgz = − sgn(ω)

√
ω2

c20
− k2

gx ksz = − sgn(ω)

√
ω2

c20
− k2

sx. (3)

The non-evanescent portion of the wavefield is defined by purely real vertical wavenumbers, and it
is this portion of the wavefield that the IMA algorithm uses in its computation. Hence, we define a
domain of non-evanescence, and store the corresponding portion of b1 in the computer’s memory.
In particular, we see from the dispersion relations that the domain of interest is

D = {(kgx, ksx, k1, k2)| −
ω

c0
≤ {kgx, ksx, k1, k2} ≤

ω

c0
}

and is illustrated in Figure 1. Making note of this domain before reading b1 from disk allows for
the efficient use of the computer’s memory.

The second change, improved load balancing, we find by noting that each realization of ρ in equa-
tion (2) requires the same amount of computation; hence, we count the number of realizations of ρ,
and then divide these realizations evenly amongst the processing units on a many-CPU computer
(see Kaplan et al. (2005a) for further details).

3 Free surface multiple algorithm, field data issues

The FSME algorithm presented in Weglein et al. (2003) is

Dfs = D1 +D2 + · · · (4)
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Figure 1: We plot the domain of non-evanescence for the IMA algorithm. We say that ω1 is the minimum
frequency that we compute in b3IM and, likewise, ω2 is the maximum computed frequency in
b3IM .

where in two dimensions,

Dn(kx, z|ksx, zs;ω) =
i

Mπ

∫ ∞

−∞
k′0e

−ik′
0(z+zs)Dn−1(k

′
x, z|ksx, zs;ω)D1(kx, z|k′x, zs;ω)dk′x, (5)

k′0 = sgn
√
ω2/c20 − k′x, and c0 is the wavespeed between the measurement surface z and the free

surface. M is frequency distribution of the source wavelet.

Unlike the IMA algorithm, FSME is straight-forward to implement in a parallel architecture. This is
because the algorithm works frequency-by-frequency, and we make a load balanced implementation
by evenly dividing these frequencies amongst the nodes of the computer.

Our 2D implementation of FSME allows for some of the peculiarities of real data. In particular, it
lets the distance between consecutive shots differ from the distance between consecutive receivers.
Since equation (5) operates in the wave-number domain, we can choose its parameters independently
from their real domain counter-parts. In particular, we note that

∆kgx =
2π

Ng∆xg
∆ksx =

2π

Ns∆xs

where ∆xg is the geophone sampling interval, ∆xs is the shot sampling interval, ∆kgx is the
geophone wavenumber sampling interval and ∆ksx is the shot wavenumber sampling interval. Also,
we assume that xs and xg are sampled on a square grid, and that Ng and Ns are the number of
shots and receivers, respectively, on the grid. An inspection of equation (5) reveals the need for
∆ksx = ∆kgx. If ∆xs = ∆xg, then this need is easily satisfied by Ng = Ns. In the usual case where
∆xs > ∆xg, we write

Ng = Ns

(
∆xs

∆xg

)
(6)

so that

∆kgx =
2π

Ng∆xg
=

2π

Ns(∆xs/∆xg)∆xg
=

2π

Ns∆xs
= ∆ksx.

Hence, given a number of shots Ns, we zero-pad the geophone dimension out to a total of Ng

samples, according to equation (6).

Of course, the zero-padding governed by equation (6) does not change the Nyquist wavenumbers.
For the case of ∆xs > ∆xg, we note that kgn > ksn where kgn and ksn are Nyquist wavenumbers
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Figure 2: We illustrate the 2D FSME algorithm for data with ∆xs = ∆xg = 10m. From left to right, we
plot (a) synthetic data acquired from a 2D survey over a 1D earth with a single reflector; hence,
the data contains one primary event and two free surface multiples; (b) the free surface multiple
prediction evaluated for the first two terms in equation (4); and, (c) a data trace (thick dashed
line) taken from (a) and its corresponding prediction (solid line). Notice that, as expected, we
find both amplitude and phase of the first two orders of free surface multiples.

for geophone and shot dimension respectively. Hence, to satisfy the requirements of equation (5),
we must truncate D1(kgx, ksx, ω) so that kgx < ksn. Of course this reduces the information in both
wavenumber dimensions to the extent of the Nyquist wavenumber in the shot dimension.

4 Free surface multiple algorithm, synthetic example

In this section, we apply FSME to synthetic data. The data is deghosted (Zhang and Weglein,
2005), has a know source wavelet, and is from a 2D acquisition geometry and a 1D earth model.
However, we emphasize that the algorithm is fully 2D. Here, we show examples for both ∆xs = ∆xg

and ∆xs 6= ∆xg.

First, Figure 2 shows our example for ∆xs = ∆xg = 10m. Figure 2a plots the shot gathers and
Figure 2b the corresponding second order prediction Dfs = D2 + D3. Figure 2c plots a single
trace from the data (thick dashed line), and the corresponding second order prediction (solid line).
Notice that with deghosted data and full knowledge of the source wavelet, the algorithm finds both
phase and amplitude of the multiple events. Second, Figure 3 shows the same example, but for
∆xs = 20m and ∆xg = 10m.

5 Discussion

In this short note, we briefly summarize updates made to the M-OSRP 2D IMA implementation,
and introduce the M-OSRP 2D FSME algorithm. The implementation of the latter is largely
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Figure 3: We illustrate the 2D FSME algorithm for data with ∆xs = 20m and ∆xg = 10m. From left
to right, we plot (a) synthetic data similar to what is shown in Figure 2; (b) the free surface
multiple prediction computed using the first two terms in equation (4); (c) a data trace (thick
dashed line) taken from (a) and its corresponding prediction (solid line).

straight-forward; but, here we make note of the case where ∆xs 6= ∆xg, and provide an implemented
method for dealing with this situation directly within the algorithm. This is important for field
data, and may also be useful in a three dimensional version of the algorithm.
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Optimizing internal multiple attenuation algorithms for large distributed
computing systems

Sam T. Kaplan, Billy Robinson, Kristopher A. Innanen and Arthur B. Weglein

Abstract

We build a version of the internal multiple attenuation algorithm for large scale distributed
computing systems. Given large enough amounts of data, the internal multiple attenuation algo-
rithm is extremely costly, requiring computers that can deliver significant FLOPS (performance).
The algorithm is also costly in terms of its memory requirements in that any realization of its
output requires a scan over all realizations of its input. Unfortunately, this causes a dilemma,
as the computers that offer the greatest performance are typically distributed systems (e.g.,
IBM BlueGene) that contain many, but limited, memory spaces. Our proposed algorithm takes
advantage of the sum total of resources of the distributed system (both processing and memory),
while allowing for the memory limitations of its individual components.

1 Introduction

The internal multiple attenuation (IMA) algorithm presented in Weglein et al. (1997) along with
the variation shown in Kaplan et al. (2004) estimate seismic events that have experienced at least
one downward reflection from a buried reflector in the earth (i.e. internal multiples). The implemen-
tation of internal multiple attenuation yields a computationally expensive algorithm. The issues
are two-fold. (1) The number of operations required to compute the internal multiple attenuator is
large, thus requiring a computer capable of large numbers of floating point operations per second
(FLOPS); and (2) any given realization of the attenuator requires a scan over all realizations of
input data, thus a successful implementation needs a computer algorithm that has fast access to
the entirety of the input data set.

In this paper, we consider the implementation of the IMA algorithm on a distributed computing
system. These systems consist of multiple computers (nodes) that communicate data to each
other over a network. Each node may have slim resources with respect to to both storage and
FLOPS; but, the sum total of resources in the distributed system is what makes it an appealing
tool for the IMA algorithm. The IBM BlueGene architecture is one such example of a distributed
computer, and one such instance of this architecture is the BlueGene/L computer at the Lawrence
Livermore National Laboratory consisting of 65,536 nodes and 33 Tera-bytes of random access
memory (512 Mega-bytes per node). To take advantage of a distributed system such as this, the
IMA algorithm needs to cope with the limitations of the individual nodes while taking advantage
of their abundance. In particular, we need to evenly and efficiently distribute the algorithm’s task
amongst the multitude of nodes.

To motivate the requirement of developing an IMA algorithm for a large distributed system, we
start with an analysis of its computational complexity. Next, we perform an analysis of the IMA
equations suitable for our need to divide their task into thousands of sub-tasks. Further, we find
that because the algorithm requires multiple scans over input data, the storage and communication
of these input data to the individual nodes is a significant burden to the algorithm. We utilize
reciprocity to reduce this communication burden, and provide an algorithm that is potentially
capable of scaling with the size of the distributed system.
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2 The IMA algorithm

In this section, we do not pretend to give a complete explanation of internal multiple attenuation.
Rather, we present, for reference, a synopsis of the IMA equations which are used as the basis for
our subsequent analysis. We encourage the interested reader to see Weglein et al. (1997, 2003) and
Kaplan et al. (2004) for further details.

For two dimensions, the internal multiple attenuator can be written as (Kaplan et al., 2004)

b3IM (kgx, ksx, ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

∞

∫ ∞

−∞
b1(k1, k2, z1)e

−i(k1z+k2z)z1

·
[∫ ∞

z1+ε
b1(kgx, k1, z2)e

i(kgz+k1z)z2dz2

] [∫ ∞

z1+ε
b1(k2, ksx, z2)e

i(k2z+ksz)z2dz2

]
dz1dk1dk2 (1)

where b3IM is the internal multiple attenuator with dimensions of receiver- and source-side wave
numbers (kgx and ksx) and frequency ω, and b1 is Stolt (constant wavespeed) migrated data in
dimensions of source- and receiver-side wave numbers and pseudo-depth z. We relate pseudo-depth
to two way travel time t using a constant wavespeed c0 (usually waterspeed) such that z = t/(2c0).
Further, we note that k1z, k2z, kgz and ksz are vertical wavenumbers and are related to their
horizontal counter-parts through the ubiquitous dispersion relation. In particular, we have

k1z = − sgn(ω)

√
ω2

c20
− k2

1 k2z = − sgn(ω)

√
ω2

c20
− k2

2

kgz = − sgn(ω)

√
ω2

c20
− k2

gx ksz = − sgn(ω)

√
ω2

c20
− k2

sx. (2)

Lastly, we define ε to be some small positive constant that ensures that b3IM contains only internal
multiples, and does not also contain primary events.

Our analysis of equation (1) proceeds in two stages. Next, we will analyze its complexity, and then
we build an algorithm suitable for large distributed systems.

3 IMA algorithmic complexity

The effort required to make a working IMA algorithm for a large distributed computing system
is not trivial. Here, we motivate the need for this work through an analysis of the computational
cost of the algorithm. In particular, we find a strategy for counting its number of floating point
operations. This serves as a litmus test for both the viability of the algorithm, and for the size of
problem (data set) that it can reasonably cope with. We compare the complexity of the algorithm
(floating point operations) to a computer’s FLOPS (performance) to give an estimate of execution
time.

To facilitate the required analysis of the IMA algorithm, we define

f(k1, k2, ω, z) = b1(k1, k2, z)e
−i(k1z+k2z)z

g(kgx, k1, ω, z) = b1(kgx, k1, z)e
i(kgz+k1z)z

h(k2, ksx, ω, z) = b1(k2, ksx, z)e
i(k2z+ksz)z
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and

ρ(k1, k2, kgx, ksx, ω) =

∫ ∞

−∞
f(k1, k2, ω, z1)

[∫ ∞

z1+ε
g(kgx, k1, ω, z2)dz2

] [∫ ∞

z1+ε
h(k2, ksx, ω, z2)dz2

]
dz1

(3)
so that equation (1) becomes

b3IM (kgx, ksx, ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ρ(k1, k2, kgx, ksx, ω)dk1dk2. (4)

The number of floating point operations required to compute any single realization of ρ is constant.
Therefore, ρ is a useful construct for our subsequent analysis.

We define
ρf (Nz, Nε) = [ρ(k1, k2, kgx, ksx, ω)] ∀{k1, k2, kgx, ksx, ω}

to be the number of floating point operations required to evaluate ρ for any single realization of
{k1, k2, kgx, ksx, ω} where Nz is the size of the pseudo-depth dimension in the input data b1. Also,
Nε∆z = ε where ∆z is the sampling interval in pseudo-depth. Later, we will present two strategies
for evaluating ρf . But first, we use it to formulate an expression for the algorithmic expense of the
IMA algorithm.

The expression for the internal multiple attenuator in equation (4) is evaluated in the computer
using a Riemann sum. However, this mathematical convenience is complicated by the separation
of the wavefield into its evanescent and non-evanescent constituents, and in particular by the fact
that the IMA algorithm concerns itself with only the non-evanescent portion (the non-evanescent
portion being defined by purely real vertical wave numbers). We refer to the dispersion relations
in equation (2) to find the domain of interest:

D = {(kgx, ksx, k1, k2)| −
ω

c0
≤ {k1, k2, kgx, ksx} ≤

ω

c0
},

and compute b3IM by the Riemann sum so that equation (4) becomes

b3IM (kk, kl, ωm) =
1

2π

∑

ki∈D

∑

kj∈D

ρ(ki, kj , kk, kl, ωm) , kk ∈ D, kl ∈ D

=
1

2π

∑∑I2(m)

i,j=I1(m)
ρ(ki, kj , kk, kl, ωm) , k, l ∈ [I1(m) . . . I2(m)] (5)

where

I1(m) = I(−ωm

c0
) I2(m) = I(

ωm

c0
) (6)

and I is some operator that maps to appropriate indices in the Riemann sum. We count the number
of summation operations in equation (5) to find that the total number of floating point operations
used to compute b3IM is

b3IMf (M1,M2, Nz, Nε) = [b3IM (kk, kl, ωm)] =

M2∑

m=M1

(I2(m)− I1(m))4ρf (Nz, Nε). (7)
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where M1 and M2 bound the computed temporal frequencies in b3IM ; that is, Nω = M2 −M1 + 1
where Nω is the number of realizations of ω in b3IM . Equation (7) is our desired result except that
the value of ρf is still unknown. We proceed to evaluate ρf using two methods. First, we make a
simple count of the number of operations used to compute ρf which produces a lower bound ρf1.
Next, we use a computer to evaluate realizations of ρ in order to obtain a second estimate of ρf

which we call ρf2. This second estimate should provide more accuracy, and should be corroborated
by its lower bound ρf1.

3.1 Counting floating point operations in ρ

In order to find ρf1, we evaluate equation (3) using a Riemann sum. First we write,

Gi(g(kgx, k1, ω, z)) = gi+Nε + gi+1+Nε + · · ·+ gNz
(8)

Hi(h(k2, ksx, ω, z)) = hi+Nε + gi+1+Nε + · · ·+ hNz
(9)

where gi = g(kgx, k1, ω, zi), hi = h(k2, ksx, ω, zi). Then, using equations (8) and (9), and letting
n = Nz −Nε, we write the Riemann sum for equation (3):

ρ(k1, k2, kgx, ksx, ω) =
n∑

i=1

f(k1, k2, ω, zi)Gi(g(kgx, k1, ω, z))Hi(h(k2, ksx, ω, z)). (10)

To analyze the computational complexity of a single realization of ρ, we perform our analysis in four
steps. We find a lower bound on the total number of floating point operations required to evaluate
(1) f(k1, k2, ω, zi), (2) Gi(g(kgx, k1, ω, z)) and (3) Hi(h(k2, ksx, ω, z)) for all possible values of i. (4)
We use the results from steps (1)-(3) in our analysis of equation (10) to find the total number of
floating point operations required to compute a single realization of ρ. In what follows, we assume
that additions and multiplications of real numbers count for one floating point operation each.
Complex addition costs two floating point operations, complex multiplication six floating point
operations, and cosine and sine functions are each equivalent to forty floating point operations.

First, we compute all realizations of f in equation (10) by defining

en = e−i(k1z+k2z)zn ∆e = ei(k1z+k2z)∆z (11)

and using the recursion defined by the equations,

f(k1, k2, ω, zn) = b1(k1, k2, zn)en ei = ei+1∆e f(k1, k2, ω, zi) = b1(k1, k2, zi)ei (12)

for i = (n − 1), (n − 2), . . . , 1. A simple and rough analysis of equation (11) reveals one addition,
two multiplications, two sine functions and two cosine functions for a total of 163 floating point
operations. A rough analysis of equation (12) gives 2n complex multiplications for a total of 12n
floating point operations. Hence, for the computation of f , the total floating point operations is
approximately given by

ff = 163 + 12n. (13)

Next, we compute all realizations of G in equation (10) by defining eNz
and redefining ∆e such

that,

eNz
= exp(i(kgz + k1z)zNz

) ∆e = exp(−i(kgz + k1z)∆z) (14)
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and note the recursive formulation for Gi,

GNz
= gNz

= b1(kgx, k1, zNz
)eNz

ei = ei+1∆e Gi = Gi+1 + gi = Gi+1 + b1(kgx, k1, zi)ei (15)

where i = (Nz−1), (Nz−2), . . . , Nε. A simple and rough analysis of equation (14) reveals, as before,
163 floating point operations. A similar analysis of equation (15) gives 2n complex multiplications
and n complex additions for a total of 14n floating point operations. An equivalent analysis holds
for the complexity of H, so that

Gf = Hf = 163 + 14n. (16)

Finally, we use ff (equation (13)), Gf and Hf (equation (16)) and equation (10) to find the total
number of floating point operations for a single realization of ρ:

ρf1 = ff +Gf +Hf + 14n = 489 + 54n. (17)

We emphasize that equation (17) represents a lower bound on the number of floating point operatons
required to compute a single realization of ρ. A more studious count of the operations is beyond
the scope of this paper. In fact, the next section of our paper uses an alternate method to count
floating point operations, and equation (17) is used to validate the ensuing result.

3.2 Measuring floating point operations in ρ

In the previous section, we performed an analysis to find a lower bound on the number of floating
point operations required to compute ρ. Further, we noted previously that because ρ has constant
computational complexity, it is a useful construct in our broader analysis. Here, we evaluate
the computational complexity of ρ using the internal clock of a personal computer. The analysis
proceeds in two steps. First, we measure the number of compute cycles required to compute
one floating point operation. Then, we find the number of compute cycles required to compute
one realization of ρ. Combining this information provides us with the number of floating point
operations required to compute ρ.

To find the number of compute cycles required to compute one floating pint operations opF , we
implement the following pseudo-code:

start = clock();
for i=1...N, do y = x + x
end = clock();
opF = (end - start)/N;

On a Pentium 4 personal computer, opF = 6×10−10. In a similar fashion, we compute the number
of clock cycles required to compute a single realization of ρ(k1, k2, kgx, ksx, ω), opρ. Then, the
effective number of floating point operations is given by the ratio of these two values. That is,
ρf2 = opρ/opF . We tabulate the results for various values of Nz and Nε in Table 1.
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Nz −Nε (pseudo-depth samples) flops (ρf1) effective flops (ρf2)

146 8,373 12,650

206 11,613 18,800

256 14,313 22,460

Table 1: The number of floating point operations required in the computation of a single realization ρ is a
function of the number of samples recorded in pseudo-depth (n = Nz −Nε). The second column
is computed using equation (17), and the third column is computed using the internal clock of a
personal computer.

3.3 2D example

Using the framework presented in the previous two sections, we find the required floating point
operations for a particular two dimensional data set. In particular, we choose a data set with
100 shots, 100 receivers, 1000 pseudo-depth points (n), and 1000 output frequencies in b3IM . We
choose a reference wavespeed c0 of 2000m/s and a sampling interval in time of .001s. Using these
parameters we find ρf1 ≈ 70, 000, and a total of b3IMf ≈ 3 × 1015 floating point operations. For
comparison, the BlueGene/L computer at the Lawrence Livermore National Laboratory is capable
of 50× 1012 FLOPS. Hence, an efficient implementation of the algorithm should run in around one
minute.

It is important to note that because of evanescence (equation (6)), the computational cost increases
greatly with increased realizations of output frequencies in b3IM . Thus, at the expense of accuracy,
one can always choose a smaller number of output frequencies which in turn gives a much smaller
computational cost.

3.4 3D examples

Much of the analysis presented in the previous sections is also applicable to three dimensional data.
The only difference is equation (7) which becomes,

b3IMf (M1,M2, Nz, Nε) = [b3IM (kk, kl, ωm)] =

M2∑

m=M1

(I2(m)− I1(m))8ρf (Nz, Nε). (18)

Once again, this formulation can be used to determine appropriate parameters for a data set
given the available FLOPS. The requirements of the 3D algorithm are considerable. Indeed, using
parameters similar to the preceding 2D example (with 100 shots/receivers in each dimension), we
find approximately 1023 required floating point operations. Of course, smaller experiments could
achieve reasonable run times; but, it, never-the-less, may prove useful to investigate approaches
that constrain the parameters of the three dimensional model.

4 IMA algorithm for distributed systems

The analysis in the previous section should convince the reader of the need for large distributed
computing systems when implementing IMA. However, the difficulty of implementing the algorithm
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on a distributed system, alluded to in our introduction, is due to the inherent requirements of b3IM .
We know that each node on the system has a small amount of memory, and so can only store a
small portion of b1. Further, we know that to execute the algorithm (equation (1)), the various
realizations of b1 must be convolved and correlated with each other. This means that a massive
amount of communication between nodes is required. The goal of this section is to formulate the
problem to both allow for its solution on a distributed system, and to attempt to minimize the
amount of communication required for this solution. To that end, we must (1) find a way to
compute something useful with little data, (2) find a way to efficiently communicate these data to
the same memory space where the computation can be performed, and (3) efficiently communicate
the result of this computation to a location on the distributed system where it can be appropriately
used.

We recall our definition of ρ (equation (3)) for 2D IMA which allows us to compute a single
realization of ρ with access to, at most, three traces. For convenience, we repeat this equation here:

ρ(k1, k2, kgx, ksx, ω) =

∫ ∞

−∞
f(k1, k2, ω, z1)

[∫ ∞

z1+ε
g(kgx, k1, ω, z2)dz2

] [∫ ∞

z1+ε
h(k2, ksx, ω, z2)dz2

]
dz1

(19)
where f is a function of b1(k1, k2, z), g is a function of b1(kgx, k1, z), and h is a function of
b1(k2, ksx, z). Hence, we see, quite simply, that any single realization of ρ is computed with at
most three traces. We choose to design our algorithm around this central idea, setting aside a
portion of nodes on the distributed system for the task of computing realizations of ρ. Further, we
recall that the computational complexity of any realization of ρ is constant. Thus, it is a simple
matter to evenly divide the computation amongst the nodes of the computer. Given that a par-
ticular node, then, is required to compute some number of realizations of ρ, we are tasked with
sending it the required traces, and collecting, from the node, its computed realization of ρ.

With this in mind, we divide the nodes in the distributed computing system into three groups.
(1) We designate a group of nodes (compute nodes) responsible for computing some subset of the
realizations of ρ. (2) We designate a group of nodes (data nodes) for storing the input b1, and,
when needed, sending appropriate portions of its data to the compute nodes. Due to the size of
seismic data in both 2D and 3D surveys, it is more than likely that multiple nodes are required
to store these data. (3) We designate a group of nodes (collection nodes) for storing the output
of the algorithm b3IM , for collecting the realizations of ρ from the compute nodes, and for making
appropriate summations over the realizations of ρ. Again, given the size of b3IM it is most likely
that multiple nodes will be required for storing this information. A schematic of the algorithm is
shown in Figure 1, and we proceed to analyze its various components.

4.1 Data nodes

We assign a total of nd data nodes, and partition b1(kg, ks, z) amongst these nodes so that each one
holds a number of geophone gathers. That is, the ith node holds ngd(i) = Ni(ng/nd) gathers where
ng is the total number of geophone gathers, and Ni is an operator that deals with the remainder in
the division, ensuring that ngd(i) is always an integer value. If this division does have a remainder,
then the nth

d data node is tasked with these remaining gathers. We define the ith node’s subset of
geophone gathers as

b1(i) = b1(kg(i), ks, z) , kg(i) ∈ [k1
gd(i), k

2
gd(i)] , k1

gd(i+ 1) = k2
gd(i) + ∆kg.
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Figure 1: A rough schematic of internal multiple attenuation algorithm designed for a distributed com-
puting system. The algorithm is divided into three parts consisting of data nodes (left side),
compute nodes (middle) and collection nodes (right side).
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We must choose nd to be sufficiently large so that there is adequate memory on each data node for
storing their subset of geophone gathers.

Aside from storing their assigned geophone gathers, each data node waits to receive a signal from a
compute node. This signal will ask for a particular geophone gather which the data node will, then,
send across the network of the distributed system to the waiting compute node. The data node
will repeat this process until its data is no longer required by any compute nodes. A schematic of
the algorithm run on each compute node is shown on the left side of Figure 1.

4.2 Collection nodes

We assign a total of nc collection nodes, and partition b3IM (kg, ks, ω) amongst these nodes so that
each one holds a number of geophone gathers. Like the data nodes, the ith collection node holds
ngc(i) = Ni(ng/nc) gathers where ng is the total number of geophone gathers. We define the ith

node’s subset of geophone gathers as

b3IM (i) = b3IM (kg(i), ks, ω) , kg(i) ∈ [k1
gc(i), k

2
gc(i)] , k1

gc(i+ 1) = k2
gc(i) + ∆kg.

In analogy to the data nodes, we must choose nc large enough so that there is adequate memory
on each collection node for holding their subset of geophone gathers.

Aside from storing their assigned portions of b3IM , each collection node waits to receive realizations
of ρ from a compute node. Once received, it adds these realizations to its portion of b3IM according
to equation (5), waits for the next computed realization of ρ, and repeats this process until all
realizations of ρ are accounted for. A schematic of the algorithm run on each collection node is
shown on the right side of Figure 1.

4.3 Compute nodes

We make each compute node responsible for an equal number of realizations of ρ. The particular
subset that a compute node is responsible for is found by simply counting the total number of
realizations of ρ (equation (7)), and dividing this result by the number of compute nodes. The
algorithm on any given compute node loops through its assigned realizations of ρ, requesting suitable
portions of b1 from data nodes. A schematic of the algorithm run on each compute node is shown
in the middle portion of Figure 1.

Whenever a compute node requests a portion of b1 from a data node, it must wait for that data to
be sent across the network. This can severely hamper the scaling characteristics of the algorithm.
That is, the algorithm may slow down due to massive amounts of information (b1) transmitted
across the network. To circumvent this problem, we assume that each compute node has enough
memory to hold at least two receiver gathers. This allows us to use reciprocity to minimize the
data transfer of b1 across the network. In particular, we note that reciprocity gives the relation

b1(k1, k2, z) = b∗1(k2, k1, z)

where ∗ denotes the complex conjugate. Hence, storing, on the compute node, a geophone gather
b1(k1, k2, z) (i.e., a single realization of the geophone wavenumber k1 and all realizations of the shot
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Figure 2: A schematic of reciprocity which we use to illustrate a component of the compute nodes’ al-
gorithms. The top row illustrates a geophone gather with geophone wavenumber k1 and shot
wavenumbers k2(1), k2(2), etc. The bottom row illustrates the equivalent information stored in a
shot gather with shot wavenumber k1, and geophone wavenumbers kg(1) = k2(1), kg(2) = k2(2),
etc.

wavenumber k2), gives immediate knowledge of the shot gather b1(kg, k1, z) (i.e., a single realization
of the shot wavenumber k1 and all realizations of the geophone wavenumber kg). Figure 2 shows a
simple schematic of this idea.

Due to this reciprocal relation, we are, despite the third order nature of the algorithm, able to
collect only two geophone gathers from the data nodes, to effect knowledge of (1) b1(k1, k2, z), (2)
b1(kg, k1, z) and (3) b1(k2, ks, z) for one realization of k1, and all k2 and kg in (1) and (2); and for
one realization of k2, and all realizations of ks in (3). Once a compute node has this information, it
can compute its corresponding realizations of ρ, and send them to the appropriate collection nodes.
It may be the case that the required data are already on the compute node. In this case, the request
to the data node is skipped. Moreover, if computer memory is available, we allow compute nodes
to hold many receiver gathers. This allows the algorithm to operate efficiently on a wide range of
hardware.

5 BlueGene/L experiments

We test our implementation of the 2D IMA algorithm using up to, and including, 1024 central
processing units (nodes) on an IBM BlueGene/L machine with each node addressing 256 Mega-
bytes of random access memory ∗. Here, we show three experiments to illustrate the algorithms
scaling characteristics on distributed computing systems. In all three experiments, the 2D input
b1(kgx, ksx, z1) to the algorithm is built from 81 shots each with 81 geophones. Each trace has 300
samples in pseudo-depth. The original t− x data is generated using a finite-difference algorithm.

The experiments are summarized in Tables 2 through 4. In each of these three experiments, we
compute several instances of the same b3IM where in each subsequent execution of the program,
we increase the number of compute nodes. Ideally, the run-time of the program should be inversely
proportional to the number of compute nodes. To see whether or not this is true, we use ratios
of run-times, labelled normalized run time in Tables 2 through 4. For example, experiment 1a
in Table 2 computes b3IM (kgx, ksx, ω) for 60 realizations of ω, and uses 3 data nodes, 3 collection
nodes and 1 compute node. Meanwhile, experiment 1b computes the same portion of b3IM , but
with 8 compute nodes. The normalized run time for experiment 1b is the ratio of the run time for

∗In actuality, The BlueGene machine that we use has two central processing units on each node, and a total of 512
Mega-bytes of memory per node. However, each processor has access to only half of that memory. For our purposes,
we refer to each of these single-processor/single-memory units as nodes, even though they are physically grouped in
pairs.
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experiment 1a to that of experiment 1b. Likewise, for experiment 1c, the normalized run time is
the ratio of the run time for experiment 1a to that of experiment 1c, and so on. Therefore, ideal
scaling of the IMA algorithm is evidenced by a one-to-one relation between the number of compute
nodes and the normalized run time. The results of the first experiment, shown in Table 2, illustrate
an ideal (linear) scaling of the algorithm for up to 64 compute nodes.

The second experiment, summarized by Table 3, computes b3IM (kgx, ksx, ω) for 120 realizations of
ω. Like experiment 1, we use 3 data nodes and 3 collection nodes. We note that using 512 compute
nodes in experiment 2c gives a normalized run time of 453.2, and shows a slight degradation in
performance. Running the algorithm with 1024 compute nodes in experiment 2d gives a normalized
run time of 405.4 which, without doubt, confirms the problem. However, experiment 3 in Table 4
shows that this scalability degradation has a simple remedy.

The reason for the poor scaling result illustrated by experiment 2 is due to the relation between the
many compute nodes (1024) and the few collection nodes (3). Due to the BlueGene architecture,
after a compute node sends its computed realizations of ρ to the collection node, it must wait
for confirmation that the collection node has, in fact, received these same realizations. If many
compute nodes are sending realizations of ρ to few collection nodes, then we observe compute nodes
spending a significant amount of time waiting for their confirmation. We test a solution to this
problem in experiment 3 where we increase the number of collection nodes from 3 to 8, thereby
reducing the workload for each individual collection node, and reducing the confirmation time for
the compute nodes. The results of our third experiment are detailed in Table 4, where a quick
comparison of the normalized run time and the number of compute nodes reveals, as expected,
much improved scaling of the algorithm.

6 Discussion

The internal multiple attenuation algorithm yields a computationally expensive algorithm. In this
paper, we quantify the cost of the two and three dimensional forms of the algorithm, motivating the
need for its implementation on large distributed computing systems. With this motivation firmly
in place, we explained our 2D implementation which uses the immense cumulative resources of a
distributed computer while allowing for its particular local limitations. Namely, its lack of memory
per node.

While the discussion in this paper surrounds a 2D algorithm, many of the ideas should be easily
extended to three dimensions. That is, we think of the 2D version of the algorithm as both a useful
entity in itself, and as a precursor to its 3D counter-part. The basic premises of the 2D algorithm,
and in particular the use of ρ, remain applicable in three dimensions, and the success that we see
in our 2D distributed systems implementation of the algorithm should translate to an analogous
3D algorithm.
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Arthur B. Weglein, Fernanda Araújo Gasparotto, Paulo M. Carvalho, and Robert H. Stolt. An
inverse-scattering series method for attenuating multiples in seismic reflection data. Geophysics,
62(6):1975–1989, November-December 1997.

156



Optimizing IMA algorithms for large distributed computing systems MOSRP05

data nodes collection nodes compute nodes run time (sec) norm. run time

exp. 1a 3 3 1 887.9 1
exp. 1b 3 3 8 111.9 8.0
exp. 1c 3 3 32 28.1 31.6
exp. 1d 3 3 64 14.2 62.6

Table 2: We run experiments on an IBM BlueGene/L machine to compute 64 output frequencies in b3IM .
In each subsequent experiment, we increase the number of compute nodes, up to a total of 64.
The final column (normalized run time) provides a metric of the algorithm’s success, and is the
ratio of its compute time to the compute time of experiment 1a. Perfect scaling would show a
one-to-one relation between the number of compute nodes and the normalized run time.

data nodes collection nodes compute nodes run time (sec) norm. run time

exp. 2a 3 3 8 3404.0 8.0
exp. 2b 3 3 64 429.6 63.4
exp. 2c 3 3 512 60.1 453.2
exp. 2d 3 3 1018 67.2 405.4

Table 3: We run a second set of experiments similar to Table 2, except with 120 output frequencies in
b3IM , and a maximum of 1018 compute nodes. Notice that the normalized run time indicates
poor scaling for 512 and more compute nodes. The results in Table 4 address this problem.

data nodes collection nodes compute nodes run time (sec) norm. run time

exp. 3a 8 8 256 9039.2 256.0
exp. 3b 8 8 512 4756.5 497.6
exp. 3c 8 8 1008 2436.5 971.4

Table 4: We run a third set of experiments similar to Tables 2 and 3, except with 512 output frequencies in
b3IM and maximum of 1008 compute nodes. Notice that compared to Table 3, we have increased
the number of collection nodes, from 3 to 8. This change addresses the scaling issue shown in
Table 3, as the normalized run time indicates good scaling of the algorithm.
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Adaptive subtraction of free surface multiples through order-by-order
prediction, matching filters and independent component analysis

Sam T. Kaplan and Kristopher A. Innanen

Abstract

We present a three stage algorithm for adaptive subtraction of free surface multiples, a
processing step made necessary in the free-surface multiple elimination method, for example,
by the absence of any of its deterministic prerequisites (knowledge of source wavelet, deghosted
data, etc.). First, we construct multiple orders from the free surface multiple prediction formula.
Each order contains unique information about the data. Second, we use the full recording
duration of any given data trace to construct filters that attempt to match the data and the
multiple predictions. This filter produces good phase results, but because of the order by
order nature of the free surface algorithm, results that are still insufficient for straightforward
subtraction. Instead, third, we construct, trace-by-trace, a mixing model where the mixtures are
the data trace and its orders of multiple predictions. Corresponding to the mixtures, there are
sources and a mixing process, both of which we find through a blind source separation technique,
in particular by employing independent component analysis. One of the recovered sources is
the desired signal. That is, it is the data without free surface multiples. This side-steps the
subtraction inherent to most adaptive subtraction methods, and instead separates the desired
signal from the free surface multiples.

1 Introduction

Given certain prerequisites, the free surface multiple elimination (FSME) algorithm presented in
Weglein et al. (1997, 2003) provides a perfect prediction of all orders of free surface multiples.
The prerequisites for the algorithm are data without ghosts, and knowledge of the source wavelet.
While both of these requirements have published methods, their current applicability to real data
is still under development. For example, algorithms that estimate the source wavelet require either
regularization (Guo et al., 2003), or specific acquisition geometries (Weglein and Secrest, 1990).
Additional factors contributing to errors in the prediction may include 2D algorithms applied to
data with 3D effects, errors in the source and receiver depths, etc. (Abma et al., 2005). Adaptive
subtraction is a statistical technique used to compensate for these errors.

In this paper, we propose an adaptive subtraction algorithm that we exercise on input from the
free surface multiple prediction presented in Weglein et al. (1997, 2003), but our algorithm is
made in the absence of deghosting and/or wavelet estimation. The algorithm proceeds in three
stages. 1) We compute several orders of the free surface multiple prediction while ignoring the
algorithm’s rigorous requirements for deghosting and source wavelet knowledge. 2) For each trace,
a matching filter is computed and applied to both data and free surface multiple predictions. This
filter partially compensates for our already mentioned lack of rigour in the application of the free
surface multiple algorithm. 3) We use the filtered data and multiple estimates to set up and solve a
blind source separation problem (BSS). The source components of the BSS problem are computed
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using independent component analysis (ICA), and are the separated orders of free surface multiples
and the desired separated primaries.

The BSS approach avoids the problem of matching noise to signal by replacing the subtraction
step with a separation step. Another attempt to treat the problem with separation rather than
subtraction is presented in Lu and Mao (2005) who use a geometric ICA algorithm, a parametrized
model (amplitude and phase-shift), and windowed sections of the data. In this paper, we drop these
assumptions/requirements in favour of more information (multiple orders of free surface multiple
predictions).

We readily (and eagerly) admit that ideally the processing of seismic data would require no adaptive
subtraction step. That is, the physics of the wave equation should ultimately produce algorithms
that meet all of the requirements for the prediction and straight forward subtraction of free surface
multiples. In the mean time for our imperfect world, we accept the need for practical and interesting
statistical methods.

2 Free surface multiple algorithm

The goal of this paper is, of course, to remove free surface events from seismic data. The method
that we use employs both physics and information theory. In this section, we concern ourselves
with the former through the application of the FSME algorithm. Our partial application of the
FSME algorithm results in several orders of predictions of free surface multiples. While it is not
immediately obvious why all of these orders of predictions should be computed, we assure the reader
that it is exactly this abundance of information that we later take advantage of in our BSS/ICA
formulation.

The FSME algorithm of Weglein et al. (1997, 2003) stems from an analysis of the wave equation
which in two dimensions is

L[G0(x, z|xs, zs;ω)] =

(
∂2

∂x2
+

∂2

∂z2
+
ω2

c20

)
G0(x, z|xs, zs;ω) = Mδ(x− xs) [δ(z − zs)− δ(z + zs)]

(1)
where M is the time distribution of the source, and δ(x−xs)δ(z− zs) and δ(x−xs)δ(z+ zs) model
a point source and the free surface respectively. The solution G0 is valid for an acoustic half-space
with wavespeed c0. We find a solution ψ(x, z, t) valid in an arbitrary medium through scattering
theory. In particular, the forward scattering series is

ψs = G0V G0 +G0V G0V G0 +G0V G0V G0V G0 + · · · (2)

where ψs = ψ − G0 is the scattered wavefield in a medium defined by the reference wavespeed c0
and an arbitrary model perturbation (scattering potential) represented by V (x, z). Meanwhile, the
inverse series is written as

V = V1 + V2 + V3 + · · · . (3)

where Vn is nth order in the data. Substituting (3) into (2) gives

ψs = (G0V1G0) + [G0V2G0 +G0V1G0V1G0 +G0V3G0 +G0V2G0V1G0

+G0V1G0V2G0 +G0V1G0V1G0V1G0 + · · · ] (4)

= (G0V1G0) + φ
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where φ = 0, and by equating like orders in equation (4), we see that

0 = G0V2G0 +G0V1G0V1G0 (5)

0 = G0V3G0 +G0V2G0V1G0 +G0V1G0V2G0 +G0V1G0V1G0V1G0 (6)

· · · .

To build the free surface multiple elimination algorithm, we define Gd
0 and Gfs

0 such that G0 =

Gd
0 +Gfs

0 , L[Gd
0] = Mδ(x− xs)δ(z− zs), and L[Gfs

0 ] = −Mδ(x− xs)δ(z+ zs). Next, we define V fs
n

in terms of ψfs
s and Gd

0 to build the desired portion of equation (4),

ψfs
s = Gd

0V
fs
2 Gd

0 +Gd
0V

fs
3 Gd

0 + · · · . (7)

Each term in equation (7) is recursively built from its preceding term using the properties of the
scattering series illustrated in equations (5) and (6). In particular, we have for the second order
terms (equation (5)),

(Gd
0 +Gfs

0 )V2(G
d
0 +Gfs

0 ) = −(Gd
0 +Gfs

0 )V1G0V1(G
d
0 +Gfs

0 ) (8)

Left and right multiplying equation (8) by (Gd
0 +Gfs

0 )−1 and Gd
0 gives

Gd
0V

d
2 G

d
0 +Gd

0V
fs
2 Gd

0 = −Gd
0V1G

d
0V1G

d
0 −Gd

0V1G
fs
0 V1G

d
0 (9)

where, we note that
Gd

0V
fs
2 Gd

0 = −Gd
0V1G

fs
0 V1G

d
0 (10)

is the first term in equation (7). All subsequent terms in equation (7) are computed recursively
from the preceding terms. For example, we consider the second term in equation (7) which is found
through due consideration of the third order terms in the inverse scattering series (equation (6)).
In particular, we have

G0V3G0 = −G0V2G0V1G0 −G0V1G0V2G0 −G0V1G0V1G0V1G0

= −G0V2G0V1G0 −G0V1G0V2G0 +G0V2G0V1G0

= −G0V1G0V2G0.

Using a simple analogy to our derivation of equation (10), it can be shown that

Gd
0V

fs
3 Gd

0 = −Gd
0V1G

fs
0 V

fs
2 Gd

0

is the second term in equation (7), and in general the nth term is

Gd
0V

fs
n Gd

0 = −Gd
0V1G

fs
0 V

fs
n−1G

d
0. (11)

For convenience, we define D1 = ψs = Gd
0V1G

d
0 and Dn = Gd

0V
fs
n Gd

0, n = 2, 3, . . . where D1 is
the de-ghosted seismic data. Following substitution of the appropriate Green’s functions and some
algebra, we find (Weglein et al., 1997, 2003)

Dn(kx, z|ksx, zs;ω) =
i

Mπ

∫ ∞

−∞
k′0e

−ik′
0(z+zs)Dn−1(k

′
x, z|ksx, zs;ω)D1(kx, z|k′x, zs;ω)dk′x (12)
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Figure 1: We use a finite difference algorithm to generated a single shot gather for an acoustic and 1D
earth model consisting of a single reflector at a depth of 400m. We place both the source and
receivers at a depth of 10m. Figure (a) plots the zero offset trace of the shot gather. (b)-(d) plot
our estimates of D2 through D4, and are computed with M = 1 in equation (12) and without
removing the ghost from the data so that we are using an approximation to D1.

(more details can be found in Appendix A) where equation (7) becomes

ψfs
s = D2 +D3 + · · · (13)

and is the free surface multiple predictor.

To illustrate the properties of each Dn in equation (13), we consider the example in Figure 1. We
use a finite difference algorithm to generate a single shot gather from a 1D earth model consisting
of a single reflector at a depth of 400m. Hence, the data contains one primary event and several
orders of free surface multiples. Both the source and receivers are placed at a depth of 10m, and we
do not perform any deghosting step. Figure 1a shows the shot gather’s zero-offset trace. Figures
1b-d show Dn for n = 2, 3, 4 and are computed with M = 1 in equation (12). Because of our
neglect of the wavelet and ghosts, each subsequent Dn is altered by convolution with an effective
wavelet that precludes the direct subtraction of D2 +D3 +D4 from the data D1.

3 Matching filter

The FSME algorithm has created series terms Dn that, with all prerequisites supplied, are ready
for subtraction from the data. In the absence of some or all prerequisites, a situation assumed in
this paper, we instead treat these Dn as linear mixtures of primaries and free surface multiples, to
be separated via ICA. However, the raw FSME output is not yet ready to be considered in such
a linear mixture; it requires a preprocessing step, in the form of a matching filter, to be applied
to all but one Dn. Once the filters are suitably applied to all but the highest order of free surface
multiple prediction, we have data appropriate for the BSS/ICA step of the algorithm.

We proceed using matrix analysis, and say that the vector dn is a single trace of Dn and match
dn to dn+1 using a smallest energy criteria. In particular, we construct a convolution matrix Hn

from dn, and find the matching filter,

m∗ = argmin
m

[
1

2σ2
n

||dn+1 −HnLm||22 +
1

2σ2
m

||m||22
]
, (14)
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where σn and σm are the standard deviations of the noise and matching filter respectively, and L is
a zero-padding operator which allows us to choose the length of the matching filter. In general, the
matching filter should be at least as long as the recording duration of a single event in the data.
After some calculus, we find that equation (14) evaluates to

m∗ =

(
LTHT

nHnL +
σ2

n

σ2
m

I

)−1

LTHT
ndn+1, (15)

where I is the identity matrix.

It is important to note the direction in which the matching filter is computed and applied. For
example, we apply the filter to d1 in an attempt to match d2:

m∗ =

(
LTHT

1 H1L +
σ2

n

σ2
m

I

)−1

LTHT
1 d2,

rather than applying it to d2 to try to match d1:

m∗ =

(
LTHT

2 H2L +
σ2

n

σ2
m

I

)−1

LTHT
2 d1.

The order matters because of the obvious need for a well posed inverse in equation (15), and the
order determines what information goes into the matrix to be inverted. For illustration, we again
consider the data from Figure 1a which is also plotted in Figure 2a. First, we compute the filter
by matching the data d1 to the first order prediction d2. The resulting filter is shown in Figure 2e,
and the result of applying the filter to d1 is plotted in Figure 2c. Figure 2f shows the filter found
by matching the first order prediction d2 to the data d1, and Figure 2d shows the application
of the filter to d2. The reason for the ill-favoured results in Figures 2d and 2f are most readily
understood in the frequency domain. Figures 2g and 2h plot the amplitude spectra of d1 and d2

respectively. Due to the convolution in the prediction algorithm (equation (12)), d1 has a larger
cut-off frequency than d2, hence the spectral division of d2 by d1 is well-posed, whereas the spectral
division of d1 by d2 is ill-posed. Since the inversion in equation (15) is the time domain equivalent
of this spectral division, the choice of order is clear.

The matching filter m∗, or its real analysis counter-part m∗(t), does not prepare the predictions
for direct subtraction, rather it can be shown that

m∗ ∗D1 = (m∗ ∗ P ) + (m∗ ∗M1) + · · ·+ (m∗ ∗Mn−1)

D2 = c2(m
∗ ∗M1) + c3(m

∗ ∗M2) + · · ·+ cn(m∗ ∗Mn−1)

where P are the primary events in the data, Mi are the ith order free surface multiples, and ci 6= 1
for i = {2, n}. The reasons for this are two-fold. First, the cost function is effected by the primary
event in D1 which is non-existence in D2; second, the multiple prediction algorithm introduces
unique error factors into each order of free surface multiple. The existence of these non-unity
factors is why a direct subtraction is impossible. One solution to this problem is the application
of a short filter in a moving window where each window is assumed to contain only one order of
free surface multiple. The development of the BSS/ICA formulation is aimed at side-stepping the
one major pitfall of this windowed approach, which is its tendency to transform data noise into
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Figure 2: We illustrate the importance of order when building the matching filter (equation (15)). Figure
(a) is a single data trace d1, and (b) is the corresponding first order free surface prediction d2.
Figures (g) and (h) are, respectively, the amplitude spectra of d1 and d2 (notice the broader
spectrum of d1). Figure (e) is the filter built to match d1 to d2. The application of the filter
is in (c), and gives the desired result. Meanwhile, (f) is the filter built to match d2 to d1. The
application of the filter to d2 is in (d), and not surprisingly yields a poor result.

signal, damaging primaries. We also note the application of m∗ to the desired signal P , and the
subsequent need to deconvolve its effect which will be done in the next section.

In this section, we have explicitly shown the construction of a matching filter which is applied to
D1 to match D2. This can be extended so that, in general, Di is matched to Dj where j > i. Anon,
we use this idea to formulate the adaptive subtraction problem in the context of BSS/ICA.

4 BSS and ICA for free surface predictions

Independent component analysis is a technique for performing blind source separation (e.g., Hyvärinen
et al., 2001). It considers a model in which sources are combined to produce mixtures, and uses
concepts from information theory to simultaneously find both the sources and the process by which
the sources are mixed. It turns out that, after application of the matching filters, the data and
free surface predictions can be thought of as the mixtures in this mixing model. The sources in the
mixing model are the individual orders of free surface multiples and the primaries. For our purpose,
we are able to assume a linear mixing model with equal numbers of sources and mixtures. Indeed,
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the goal of this section is to set up an appropriate mixing model which is solved by ICA, and
then to isolate the portion of the ICA solution that corresponds to the primary events in the data.
That is, rather than performing a subtraction to remove the free surface multiples, we perform a
separation to extract the desired signal.

As mentioned, we formulate our ICA model by assuming a linear combination of n sources, produc-
ing n mixtures. This, obviously, means that we need to consider a linear system with n equations.
In particular, we have

x1(t) = c11s1(t) + c12s2(t) + · · · c1nsn(t) (16)

x2(t) = c21s1(t) + c22s2(t) + · · · c2nsn(t)

· · ·
xn(t) = cn1s1(t) + cn2s2(t) + · · · cnnsn(t) (17)

where xi(t) are mixtures and si(t) are sources. For parsimony, we can write equations (16)-(17) in
their matrix-vector form so that

x(t) = As(t)

where xT (t) = [ x1(t) x2(t) · · · xn(t) ] and sT (t) = [ s1(t) s2(t) · · · sn(t) ] are random
vectors, and

A =




c11 c12 · · · cnn

c21 c22 · · · c2n

· · ·
cn1 cn2 · · · cnn




is called the mixing matrix. The goal of ICA is to, given the mixtures x(t), find a matrix B such
that y(t) = Bx(t) and y(t) = Ps(t) where P is a linear operator that is allowed to swap and scale
the elements of s(t). When the elements of y(t) satisfy this relation, they are called independent
components. That is, independent components are scaled and permuted versions of the sources. In
effect, this means that ICA finds two unknowns in one equation.

We will not explain the full details of the ICA theory in this paper. The interested reader is referred
to Hyvärinen et al. (2001) and Kaplan (2003) for more information. In short, the ICA algorithm
works by using the statistics of the random vector y(t), and the ubiquitous central limit theorem
which allows us to say that the components of y(t) are independent components exactly when
they are maximally non-Gaussian. In general, one can use an estimate of negentropy to quantify
Gaussianity. For the purpose of this paper, we use the Gram-Charlier expansion for this estimate
(e.g., Kendall and Stuart, 1977).

To make appropriate use of ICA, we must first coax our adaptive subtraction problem into the
discussed mixing matrix form. To do this, we use the matching filters that we constructed in the
previous section. As before, we let P be the primary events in D1 (with or without ghosts), and
Mi be the ith order free surface multiple, and write

m1 ∗D1 = (m1 ∗ P ) + (m1 ∗M1) + · · ·+ (m1 ∗Mn−1) (18)

m2 ∗D2 = c22(m1 ∗M1) + · · ·+ c2n(m1 ∗Mn−1)

m3 ∗D3 = c33(m1 ∗M2) + · · ·+ c3n(m1 ∗Mn−1)

· · ·
Dn = cnn(m1 ∗Mn−1) (19)
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Figure 3: We plot mi ∗Di for i = 1 . . . n for Di in Figure 1. From left to right, we plot (a) m1 ∗D1, (b)
m2 ∗D2, (c) m3 ∗D3, and (d) D4. These are the four mixtures used in the ICA mixing model.

Figure 4: We plot the four independent components recovered from the application of ICA to the mixtures
plotted in Figure 3. Notice that (a) is the desired result (the primary event).

Figure 5: From left to right, we plot (a) the original data trace, (b) the recovered independent component
that correlates best with the primary event. (c) the recovered independent component after
deconvolution with its matching filter m1, and (d) the matching filter m∗

1.
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where Di, i = 2 . . . n are the free surface multiple predictions computed using equation (12) and
M = 1, and mi are matching filters. With a bit of thought, we observe that

mi = mi+1 ∗m∗
i (20)

where m∗
i is the filter matching mi+1Di to mi+1Di+1. To illustrate this, we consider Figure 3.

Figure 3d is D4. Figure 3c is m3 ∗ D3 where m3 = m∗
3, matching D3 to D4. Next, Figure 3b

is m2 ∗ D2 where m2 = m3 ∗ m∗
2. Finally, Figure 3a is m1 ∗ D1 where m1 = m2 ∗ m∗

1. This
may seem like a complicated set of steps, but we point out that it is merely the application of a
sequence of simple matching filters. In essence, these matching filters are sequentially allowing for
the convolution effects of the free surface algorithm.

Once the matching filters are applied, we are ready to form the mixing problem for ICA. First, the
mixtures x are

xT (t) =
[
m1(t) ∗D1(t) · · · mn−1(t) ∗Dn−1(t) Dn(t)

]
.

Our example in Figure 3 illustrates n = 4 mixtures. Second, the unknown sources s for ICA are

sT (t) =
[
m1(t) ∗ P (t) m1 ∗M1(t) · · · m1 ∗Mn−1

]
,

and finally the unknown mixing matrix is

A =




1 1 1 · · · 1 1
0 c22 c23 · · · c2(n−1) c2n

0 0 c33 · · · c3(n−1) c3n

· · ·


 .

For example, we consider again the data in Figure 3 which are the mixtures for our ICA model. After
running ICA, we recover the independent components in Figure 4. Rember that the independent
components are a perturbed and scaled version of the sources, and one of the sources is the desired
result, m1 ∗ P . The correct independent component is found through simple application of a
correlation operator. In this case, Figure 4a is m1 ∗ P .

We conclude this section with a summary of the example that we have followed through Figures 1-4.
The summary is shown in Figure 5. First, we computed the matching filters mi to match Di to
Di+1. The matching filter m∗

1 for our example is plotted in Figure 5d. Once the matching filter
was applied, we used ICA to find the desired source m1 ∗ P , which in this case contains the one
primary event (Figure 5b). The original data is shown in Figure 5a, and after deconvolution with
m1, we get the final result (the recovered primary) in Figure 5c.

5 Example

While the example presented in the previous section served its purpose to explain our algorithm,
it is overtly simple. In this section, we show a slightly more complex example. The model consists
of two reflectors, the first at 400m and the second at 1300m. Both source and receivers are placed
at a depth of 10m. As before, we produce a single shot gather using finite difference modeling, and
corrupt it with additive Gaussian random noise in order to test the robustness of our method. The
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Figure 6: In this example we consider an 1D earth with two reflectors. We generated the data using
acoustic finite differencing with source and receivers at depths of 10m. Figure (a) plots the
noise free zero-offset trace, and (b) plots the same zero-offset trace with additive Gaussian noise.
Figures (c) and (d) plot, respectively, D2 and D3 from the noisy data in (b). Finally, (e) plots
the recovered independent component after deconvolution with the matching filter. Notice that
both primary events (labelled P1 and P2) are preserved.

zero-offset trace is plotted in Figure 6b (its noise free version is plotted in Figure 6a). The free
surface multiple predictions Di, i = 2, 3 are plotted in Figures 6c-d. We then apply the matching
filters, and the subsequent ICA step and deconvolution to find the result in Figure 6e. Notice that
we have done a reasonable job in removing all free surface multiple energy while retaining the low
amplitude primary event from the second reflector.

6 Discussion

This paper proposes an adaptive subtraction algorithm specifically suited for free surface multiples.
In particular, we consider the case where we lack knowledge of the source wavelet and/or where
the data contains ghosts. The algorithm works in stages. First, we find multiple terms in the free
surface multiple prediction series; second, for each data trace we find filters that make a best (in
an L2 sense) match between the data and the computed terms in the series; and third, we apply
ICA to separate free surface multiple energy from the desired signal. In doing so, we replace the
subtraction step with a separation step, and avoid the problem of fitting noise to signal.

Of course, we acknowledge that in an ideal world, the free surface elimination algorithm would
require only straight forward subtraction, and the adaptive component of the algorithm would be
rendered useless by complete use of the physics. Never-the-less, the statistical methods that result
from our lack of adherence to the physics are both interesting and fruitfull.

Further, we concede that the matching filter in our algorithm will likely experience difficulties where
there are crossing events in the data. However, there are potential solutions to this problem. First,
we note that the computation of the matching filter could be augmented with a reference model
taken from near-by traces that lack crossing events. Currently we, in effect, use a zero reference
model for the matching filter. Second, we could incorporate statistical information about the trace
to aid in the building of the matching filter. Namely, the known sparseness of the reflectivity series.
These are certainly interesting topics, and are possibilities for future research.
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A Free surface multiple elimination algorithm details

In the body of the paper, we derived the free surface multiple elimination algorithm in equation (11)
in terms of Green’s functions and scattering potential V . Then, we wrote down the explicit form
of the two dimensional algorithm in equation (12). Here we flush out some of the details that allow
us to move from the general form in equation (11) to the particular 2D form in equation (12).

From the 2D wave equation (equation (1)), we derive the following forms of Gd
0 and Gfs

0 that are
useful in the derivation of the free surface multiple attenuation algorithm.

Gd
0(x, z|xs, zs;ω) = −M

N2

∫ ∞

−∞
eikx(x−xs) iπ

k0
e−ik0|z−zs|dkx (21)

Gd
0(kx, z|xs, zs;ω) = −M

N
e−ikxxs

iπ

k0
e−ik0|z−zs| (22)

Gd
0(x, z|ksx, zs;ω) = −M

N
eiksxx iπ

ks0
e−iks0|z−zs| (23)

Gfs
0 (x, z|xs, zs;ω) =

M

N2

∫ ∞

−∞
eikx(x−xs) iπ

k0
e−ik0|z+zs|dkx (24)

We used the following definitions in deriving (21)-(24).

k0 =

√
ω2

c2
− k2

x

ks0 =

√
ω2

c2
− k2

sx.

In addition, we use the following Fourier conventions for time, shot and receiver coordinates. First
we note our convention for time.

F (ω) = F {f(t)} =

∫ ∞

−∞
f(t)e−iωtdt

f(t) = F−1 {F (ω)} =
1

N

∫ ∞

−∞
F (ω)eiωtdω

and next for the receiver coordinate.

F (kx) = F {f(x)} =

∫ ∞

−∞
f(x)e−ikxxdx

f(x) = F−1 {F (kx)} =
1

N

∫ ∞

−∞
F (kx)eikxxdkx

and, lastly, for the shot coordinate.

F (ksx) = F {f(xs)} =

∫ ∞

−∞
f(xs)e

iksxxsdxs

f(xs) = F−1 {F (ksx)} =
1

N

∫ ∞

−∞
F (ksx)e−iksxxsdksx.
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The factor N balances the Fourier transform pair and in the continuous domain is, of course, 2π.
Now, we can apply our Green’s functions to equation (11) to find equation (12). First,

Dn(kx, z|ksx, zs;ω) =

∫ ∞

−∞

∫ ∞

−∞
Gd

0(kx, z|x′, z′;ω)Vn(x′, z′)Gd
0(x

′, z′|ksx, zs;ω)dx′dz′

= −M
2

N2

π2

k0ks0
ei(k0z+ks0zs)

∫ ∞

−∞

∫ ∞

−∞
e−ik0z′e−ikxx′

Vn(x′, z′)eiksxx′

e−iks0z′dx′dz′(25)

Second,

Dn(kx, z|ksx, zs;ω) = −
∫ ∞

−∞

∫ ∞

−∞
Gd

0(kx, z|x′, z′;ω)V1(x
′, z′)

∫ ∞

−∞

∫ ∞

−∞
Gfs

0 (x′, z′|x′′, z′′;ω)

×Vn−1(x
′′, z′′)Gd

0(x
′′, z′′|ksx, zs;ω)dx′′dz′′dx′dz′

= i
M3

N4

π3

k0ks0
ei(k0z+ks0zs)

∫ ∞

−∞

1

k′0

∫ ∞

−∞

∫ ∞

−∞
e−ik0z′e−ikxx′

V1(x
′, z′)eik

′
xx′

e−ik′
0z′

×
∫ ∞

−∞

∫ ∞

−∞
e−ik′

0z′′e−ik′
xx′′

Vn−1(x
′′, z′′)eiksxx′′

e−iks0z′′dx′′dz′′dx′dz′dk′x.(26)

Substituting (25) into (26), and choosing to evaluate the integrals at the measurement and shot
depths (z and zs) gives

Dn(kx, z|ksx, zs;ω) =
i

Mπ

∫ ∞

−∞
k′0e

−ik′
0(z+zs)Dn−1(k

′
x, z|ksx, zs;ω)D1(kx, z|k′x, zs;ω)dk′x

which is the same as equation (12).
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Abstract

An inter-institution collaboration between the University of Houston and Memorial Uni-
versity of Newfoundland (MUN) has guided free-surface multiple elimination (FSME) code
alterations specifically geared to immediate field data application, both in the main algorithm
implementation and in the design of adaptive subtraction schemes. In this paper we (1) describe
the scientific goals of the MUN-based SCREECH project and the associated field data set, in-
cluding all preprocessing, (2) the application of the altered FSME code and internal adaptive
subtraction technology, and (3) illustrate and discuss the results.

1 Introduction

In this paper we apply, to 2D field data example, the free surface multiple prediction implementation
(Kaplan et al., 2005), and the adaptive subtraction scheme presented in Kaplan and Innanen
(2005). Opportunity has allowed the application of this research to real data be an inter-institution
collaboration between M-OSRP and Memorial University of Newfoundland (MUN) in Canada.

We begin by describing the scientific goals of the MUN-based SCREECH project, in particular
those goals currently impeded by coherent noise in the form of free-surface multiples. We then
enumerate the pre-processing steps accomplished prior to application of the field data ready de-
multiple algorithm. The issues remaining after pre-processing – those to be handled on the M-
OSRP side, so to speak – include free surface multiple elimination which we explore in the two
aforementioned stages: first, the application of the free surface multiple prediction; and second, the
application of the adaptive subtraction algorithm.

2 Free-surface multiples as an impediment to the scientific goals of the SCREECH
project

Offshore Newfoundland is an ideal natural research laboratory for investigating the fundamental
processes of continental extension, rifting, the opening of ocean basins and the related development
of sedimentary basins. Oil and gas discoveries in the basins offshore Newfoundland have also served
to enhance interest in developing a more complete understanding of the region. In 2000, Memorial
University, along with international partners, acquired seismic profiles offshore Newfoundland as
part of the Study of Continental Rifting and Extension on the Eastern Canadian Shelf project
(SCREECH). These profiles extended from the continental shelf, across the rifted margin, to oceanic
crust. The deep water data have been analyzed, in 2000, to constrain drill sites for the Ocean
Drilling Project (ODP). The data acquired over the continental shelf have, in contrast, not been
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fully processed or analyzed, as they suffer from contamination by (largely ocean-bottom related)
free-surface multiples. Due to the variable topography of the ocean bottom, the interference of
successive multiple wave trains and the dominance of the multiples over subtler reflections from
within the crust, conventional methods of suppressing these water bottom multiples have proved
less than satisfactory. The consensus continues to be that an adequate and interpretable image
of the extended margin will benefit from, if not require, a more complete removal of this coherent
noise.

2.1 SCREECH project details

In 2000, a joint US-Canadian-Danish collaborative project between Woods Hole Oceanographic
Institution, the University of Wyoming, the Danish Lithosphere Centre, Dalhousie University and
Memorial University of Newfoundland acquired a series of seismic profiles offshore Newfoundland as
part of the Study of Continental Rifting and Extension on the Eastern Canadian Shelf (SCREECH).
The main scientific focus of this collaboration was to better characterize the origin of the crust in the
Newfoundland basin. Both refraction/wide-angle seismic reflection and near-vertical multichannel
seismic reflection profiles were acquired, extending from the continental shelf, across the rifted
margin, to known oceanic crust beyond. For this study, the MUN group is focusing on one line
of the multichannel seismic reflection component, which extends from the continental shelf across
the Flemish Pass and Beothuk Knoll, down the continental slope and into deeper ocean (Fig. 1).
While the ocean-ward portion of Line 2 was previously investigated to tie in with the results from
Leg 210 of the International Ocean Drilling Project (ODP), the land-ward portion of the line has
not previously been examined.

3 The SCREECH field data-set and pre-processing

In this section we enumerate details of the data set, and its preparation for the application of
FSME.

3.1 Acquisition

The acquisition details for the SCREECH multichannel seismic reflection experiment are outlined
in Table 1. The multichannel seismic reflection data collected for the SCREECH experiment
were of hight quality, however data collected over the shallowest portions of the continental shelf
were contaminated with significant free-surface multiple energy (Figs. 2, 3). Due to the variable
bathymetry of the shelf, attempts at removing this energy using predictive deconvolution, the
parabolic Radon transform and f-k methods produced less than satisfactory results.

3.2 Pre-processing

The FSME algorithm (Weglein et al., 1997) requires as complete a measurement of the wavefield as
possible, and, ideally, knowledge of the source wavelet. In order to satisfy the former requirement,
the one-sided gathers generated during the marine seismic survey is expanded into two-sided gathers
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Figure 1: Bathymetry map for offshore eastern Newfoundland. The section of SCREECH Line 2 considered in this
study is overlain in red. Important bathymetric features are labelled in black.

Figure 2: Raw shot gather collected along SCREECH Line 2. Only the first 8 seconds of two-way-traveltime are
displayed to highlight the presence of free-surface multiple energy.
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Table 1: Acquisition parameters for the SCREECH experiment

Source 20 gun, 8540 cu.in. (140 L) airgun array
Shot spacing 50 m
Shot depth 7.5 m
Number of receivers along streamer 480
Receiver spacing along streamer 12.5 m
Streamer depth 7.5 m
Near-trace offset 181.65 m
Far-trace offset 6169.15 m
Sampling rate 4 ms
Trace length 16320 ms
Number of samples per trace 4081

Figure 3: Brute stack of SCREECH Line 2 without any attempts at free-surface multiple removal. Only the first 8
seconds of two-way-traveltime are displayed to highlight the presence of free-surface multiple energy.

(described below). In lieu of the latter requirement an extra adaptive subtraction step was employed
to complete the de-multiple processing. Below we describe the generation of the necessary two-sided
gathers for the SCREECH data-set.

Generating receiver gathers from shot gathers

Receiver gathers are first constructed to assist in the reciprocity-based simulation of a two-sided
acquisition; the idea will be to re-associate shot points with receiver points and vice versa. The
tendency of cable feathering and slight boat path deviations to cause shot and receiver locations to
imperfectly overlap was compensated-for as follows. For every output shot point, each shot gather
was scanned to determine the nearest receiver (to a threshold of 24.9 m, half the shot spacing).
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For the traces at these receiver locations, the output shot ID was assigned as a receiver ID, and
traces from receivers beyond 24.9m of shot locations were removed. Given the survey’s average
shot spacing of 50 m and average receiver spacing of 12.5 m, this step resulted in the preservation
of only every 4th trace. The remaining traces were re-sorted using the receiver ID numbers that
had been stored in their headers. Traces with the same receiver ID formed a receiver gather.

Exploiting reciprocity to form two-sided gathers

The receiver gathers generated from the previous step are, by reciprocity, equivalent to the shot
gathers that would have been generated had the streamer preceded the boat during the SCREECH
experiment. Transforming these receiver gathers into shot gathers simply involves switching the
sign of the offset and reassigning the shot and receiver header ID numbers; merging the two sets
of gathers produced two-sided gathers. They are, however, not yet ready for input into the FSME
algorithm, since (1) there are four times as many traces on one side than the other and (2) the
trace spacing is large across zero offset.

Balancing and interpolating the two-sided gathers

In order to balance the number of traces for each side of the two-sided gathers, dummy traces
were inserted into the right side of each gather at missing offset locations. To insert data into
these dummy traces, the gathers were first NMO corrected using a constant velocity of 1475 m/s to
flatten out the free-surface multiples. Next, data were interpolated into the dummy traces using the
TRINTERP module from the Globe Claritas seismic processing package which operates as follows:

1. The log of the Fast Fourier Transform (FFT) of each live trace is computed.

2. Across a range of live traces (two in this case), the log of the FFT of each dummy trace in
between is interpolated by computing a least squares polynomial fit of arbitrary order (second
in this case) for each individual frequency. A lower order polynomial fit is sought if an internal
chi-square criteria is not met.

3. The interpolated log of the FFT of the dummy trace is transformed into a seismic trace.

Once the dummy traces in a gather had all been interpolated, the NMO correction was removed
and the original non-interpolated traces were re-inserted into the gathers.

Spanning zero offset

At this point, the two-sided gathers contained a total of 960 traces with 480 on each side. While the
traces within each side maintained a trace spacing of 12.5 m, the trace gap across zero offset spanned
363.3 m (twice the survey’s shortest offset of 181.65 m). By inserting an extra 14 dummy traces
either side of zero offset, maintaining a trace spacing of 12.5 m between them, the trace gap across
zero offset was reduced to 13.3 m. While slightly larger than the survey trace spacing of 12.5 m, no
further trace spacing normalization was performed in order to ensure that the maximum number
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of original non-interpolated traces were involved in the multiple prediction. The interpolation of
the additional dummy traces was undertaken using the same method as outlined in the previous
step only this time the polynomial fit was computed across four live traces. The resulting fully
interpolated two-sided shot gather containing 988 traces is shown in Fig. 4.

Figure 4: Interpolated two-sided shot gather. Only the first 9 seconds of two-way-traveltime are displayed to highlight
the presence of free-surface multiple energy.

Muting of direct wave

The final step in the preparation of the SCREECH data for the multiple prediction was the muting
of the direct wave. This was achieved by picking a two-sided symmetric mute function for every
50th shot gather and interpolating the mute function across the intervening gathers.

Data subset selection for algorithm testing and validation

As a first test of the inverse scattering series free-surface multiple prediction method, only a subset
of the SCREECH data was used. This subset was selected such that the shots and receivers spanned
the same range of x locations. Given the 50 m shot spacing and 12.5 m receiver spacing, a file
containing 32 shot gathers spanned 128 receiver locations with gathers ranging from right-sided
to two-sided to left-sided (Fig. 2). The temporal extent of the data was limited to 8 seconds
two-way-traveltime where the free-surface multiples dominated.

4 Free surface multiple prediction, multiple orders

To predict the free surface multiples corresponding to the 2D prestack data in Fig. 2, we use the
implementation of the free surface multiple prediction method described in Kaplan et al. (2005).
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Figure 5: Range of gathers used for inverse scattering series free-surface multiple prediction method. A percentile
clip of 97 has been applied to the data to enhance the reflections.

This algorithm, in turn, implements the method described in Weglein et al. (2003) for multiple
orders of predictions; but, in addition allows for differing shot and receiver spacings (an obvious
requirement for the SCREECH data). In our usage of the algorithm we neglect wavelet estimation
and deghosting. This results in an imperfect prediction, and prevents their immediate subtraction
from the data; but, allows for a real data test of the adaptive subtraction algorithm described in
Kaplan and Innanen (2005). Here, we perform this test on the first 2.3 seconds of data, and display
the results of the application of adaptive subtraction to this real data example for a single shot
gather.

To satisfy the requirements of our adaptive subtraction method, we compute the first two orders
of prediction corresponding to the data in Fig. 2. To compensate for edge effects in the prediction,
due to limited aperture of the data, we apply a dip filter (sudipfilt from the Seismic Unix processing
package) to the raw prediction results, plotting the results in Fig. 6. Despite the best efforts of the
dip-filter, we find that the edge effects adversely effect the adaptive subtraction at large offsets.

The adaptive subtraction scheme is summarized in Fig. 7 where we illustrate the procedure, and
show its results for a single shot gather and the first 2.3 seconds of data. We plot the shot gather
in Fig. 7a and its first two orders of prediction in Figs. 7b and 7c, respectively. The data, and
the two orders of prediction are used as input to the adaptive subtraction algorithm that, in turn,
produces its estimate of the free surface multiple attenuated data in Fig. 7d. Fig. 7e and 7f plot
the data and attenuated data for a single trace. Notice that we have done a reasonable job in
attenuated the multiples while preserving the two visible primary events (labelled P1 and P2), the
first of which is the water bottom, and the second of which is the base of a thin veneer of sediments
on the continental shelf.

5 Discussion

This paper represents a collaboration of M-OSRP and MUN to process a portion of the SCREECH
data for further academic analysis and interpretation. To this point it has given us, through the
challenges of real data, the opportunity to test and further our implementations of free surface
multiple prediction (Kaplan et al., 2005) and adaptive subtraction (Kaplan and Innanen, 2005).
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Figure 6: Inverse scattering series free-surface multiple prediction example. We plot the first two orders of multiple
predictions corresponding to the range of gathers in Fig. 2. (a) the first order prediction. (b) the second
order prediction. These orders of prediction are subsequently used in an adaptive subtraction scheme, the
results of which, we summarize in Fig. 7.
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Figure 7: Inverse scattering series free-surface multiple prediction example. (a) A single shot gather taken from
Fig. 2; (b) first order term in the prediction series; (c) second order term in the prediction series; (d)
The shot gather in (a) after our adaptive subtraction procedure; (e) trace number 1850 taken from (a);
(f) trace number 1850 taken from (d). In (a)-(d), a percentail clip of 98 has been applied to the data to
enhance reflections. We associate the difficulties at the large offsets of the shot gather, apparent in (d),
to artifacts in the prediction (due to edge effects).
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A second goal is to, of course, sufficiently process the data for its subsequent interpretation. The
methods employed in this paper show a measure of success and point to further research. In
particular, we see the need to deal with artifacts in the free surface multiple algorithm for aperture
limited data that improve on the simple dip filtering performed in this paper.
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Inverse scattering internal multiple elimination: leading order and higher order
closed forms

Adriana Citlali Ramı́rez and Arthur B. Weglein

Abstract

Internal multiples are events in the measured wave field that have experienced at least two
upward reflections and one downward reflection in the subsurface. Internal multiples are distin-
guished from primaries because the latter events had experienced only one upward reflection.
The objective of internal multiple elimination using only recorded data (measured values of the
scattered field) and information about the reference medium is achievable through the inverse
scattering task specific subseries formalism. The first term in the subseries of the first order
internal multiple elimination series is an attenuator, which predicts the correct travel time and
an amplitude always less than the true internal multiples’ amplitude. The higher order terms in
the elimination series corrects the amplitude predicted by the attenuator moving the algorithm
towards an eliminator. The main contributing terms in this series are identified as terms in a
subseries with nonlinear self-interactions at the generating reflector (where the downward re-
flection of the first order internal multiple took place), adding this subseries we obtain a leading
order closed form that eliminates all internal multiples generated at the first reflector and im-
proves the attenuation of the remaining multiples. A second subseries corrects the attenuation
due to information on the overburden of the generating reflector. The main part of this second
subseries is summed to find a higher order closed form that eliminates the internal multiples
generated at the second reflector and further improves the reduction of all internal multiples.
A prestack form of the algorithm, which can be extended to a multidimensional form, is given
for the leading order subseries and its closed form.

1 Introduction

The inverse scattering series is the only multidimensional direct inversion procedure that can ac-
commodate a geologically complex earth without requiring knowledge of the subsurface properties.

Seismic exploration is an inverse problem. The seismic data are inverted for the properties of the
medium that created them. In exploration seismology, the medium properties correspond to the
characteristics of the earth’s subsurface, and include the spatial location of the reflectors as well as
the density and elastic properties of the layers between reflectors.

In practice, seismic data are described as a set of waves reflected and/or transmitted within these
reflectors. A catalog of these events (Weglein et al., 2003) can be separated in two event categories:

1. Events that did not interact with the earth. This category includes the direct arrival, and
the wave that went from the source up to the free surface, reflects from that surface and then
propagated directly to the receiver.
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2. Events that interacted with the earth, which are further separated into:

(a) Events that began as a wave moving upwards, leaving the source and/or ended traveling
downwards when they arrived to the receiver. The events in this category are known as
ghosts.

(b) Events that began as a wave moving downwards, leaving the source and ended traveling
upwards when they arrived at the receiver. These events are further catalogued by the
number and location of their reflections.

i. Events with one upward reflection are called primaries.

ii. Events with more than one upward reflection are called multiples. Multiples are
further divided into events that have experienced the free surface, and those that
have not: The former are called free surface multiples and the latter are called
internal multiples.

The seismic data processing is usually accomplished in a sequence of steps. e.g., seismic data
reconstruction and regularization, source wavelet deconvolution, removal of free surface multiples,
removal/attenuation of internal multiples, depth imaging or migration and inversion for changes in
earth properties. The standard practice is to perform these steps in a specific order because each
step is a pre-processing condition for the next procedure.

Among all the mathematical theory dedicated to develop algorithms to perform these steps, the
inverse scattering series processing methods are the only ones that provide a comprehensive mul-
tidimensional framework for seismic inversion capable of dealing with geological complex media
and rapid variations in earth properties. The strategy used is to find and isolate subseries of the
complete inverse scattering series with task specific purposes analogous to the ordinary seismic
processing steps (Weglein et al., 1981, 2003). To this date, these task specific subseries had been
successfully isolated and used to deal with the removal of free surface multiples and the attenuation
of internal multiples. Encouraging research and tests towards inverse scattering depth imaging and
parameter estimation has being developed and is being studied by Shaw (2005); Liu et al. (2005);
Zhang and Weglein (2005) among others.

The removal of free surface and internal multiples is a prerequisite for all processing methods for
primaries. The current high-water-mark of multiple removal techniques is the inverse scattering
free surface eliminator, and internal multiple attenuator, pioneered by Carvaho et al and Araujo et
al, respectively. Our overall purpose here is to place internal multiples and free surface multiples on
the same footing, with algorithmic capability within your seismic toolbox to reach that same level
of elimination effectiveness when you deem that necessary and indicated. There are circumstances
when: (1) free surface multiples are a problem and internal multiples are not;(2) internal multiples
are a problem and free surface multiples are not (e.g., very deep water and on-shore); (3) both types
of multiple are a problem; (4) internal multiple identification or attenuation are sufficient; and (5)
when a residual left from internal multiple attenuation is a challenge and impediment to effective
and reliable prediction. Which of these circumstances you are facing depends on the details of the
geology and the logic behind the play, and the level of ambition and demands of your processing
and exploration objectives.

Among the circumstances when internal multiple elimination would provide added-value above
that provided by an attenuator for towed streamer marine data are: (1) converted wave internal
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multiples;(2) proximal or interfering primaries and internal multiples at the target;(3) reducing
the burden on adaptive subtraction to account for missing deterministic predictive capability. We
anticipate that internal multiple elimination will place greater demands on preprocessing steps such
as data collection and wavelet estimation; and we simultaneously progress those issues to match
that requirement. However, the methods presented here never move from not needing to needing
subsurface information when we progress from attenuate to eliminating internal multiples. The last
comment further separates the inverse scattering multiple removal capability from the feedback loop
internal multiple concept.

The research described in this report does not concern with the attenuation but the elimination of
internal multiples. The difference between attenuation and elimination of a seismic event or set of
events in the data is that attenuation refers to the amplitude reduction of that event in the seismic
data and elimination refers to a complete removal of the amplitude of that event or set of events
from the data. The first research efforts to address the complete removal of internal multiples from
marine seismic data, without destroying primary reflections and with absolutely no knowledge of
the subsurface were done by Ramı́rez and Weglein (2005a).

Internal multiple elimination may be seen as a step that removes an identified coherent noise from
the recorded data. We called it coherent noise because most algorithms for imaging and parameter
estimation assume that the data have been preconditioned by removing all multiples (free-surface
and internal, see for example Carvalho and Weglein (1994); Araújo et al. (1994)).

This work represents progress in the identification, analysis and mathematical manipulation of
higher order terms in the series for internal multiple elimination, where the first term is an attenu-
ator (Araújo, 1994). These higher order terms add their contribution to the attenuator to improve
its effectiveness towards a complete elimination of internal multiples in the data.

2 Background

The inverse and forward scattering series are perturbation theories. Scattering theory does not
have description of events in the seismic way (in terms of boundaries and reflections). The study
of the forward scattering series and its analogies with the inverse series has led to a scattering
description for the construction of seismic events that is used to process them with inverse scattering
task specific subseries. The forward scattering series describes the creation of events in terms
of a reference Green’s function and a perturbation, which contains the information of the earth
properties. The processing of seismic events, with the inverse scattering subseries, is done with the
same reference Green’s function and the measured data. The inverse scattering data processing
benefits from the description and understanding derived from the forward series.

The forward scattering series, as studied by Matson (1996); Nita et al. (2004); Innanen and Weglein
(2003), describes events by an infinite series of terms. Each term is defined by propagators in the
reference medium interacting, a certain amount of times, with the perturbation. These terms are
added up to create a certain event that corresponds to a seismic event. Hence, in scattering theory,
a primary can interact more than once with the perturbation. The concepts derived from the
inverse scattering theory and the intuition provided by Weglein et al. (1981, 1997) as well as the
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framework given by the mathematical study of the forward series (Matson, 1996), showed that the
first order approximation in the construction of a primary in the forward series is located at the
first term, which is linear in the perturbation. The processing of a primary starts at the first term
in the inverse series, which is linear in the data. That same intuition, concepts and mathematical
analysis, Matson (1996) and Weglein et al. (2003) made clear that the beginning of the creation of
an internal multiple to be a part of the third term in the forward series. The third term is third
order in the perturbation and contains three interactions of the reference Green’s function with
the perturbation. Araújo (1994) and Weglein et al. (1997) found the piece of the third term in
the inverse series, third order in the data, that starts processing internal multiples and leads to an
algorithm that exactly predicts the travel time of internal multiples and approximately estimates
their amplitude. The approximate amplitude has a value always less than the actual. We call
attenuator this first order term in the processing of internal multiples (Araújo, 1994).

The attenuator has proven to be the high-water-mark processing algorithm towards identification
and attenuation of internal multiples. It is the most comprehensive method in the industry. Weglein
et al. (2003) made an analytical study, extended by Ramı́rez and Weglein (2005b), of this term.
These studies helped to determine the attenuator’s degree of effectiveness. A 1D expression that
shows the exact amount of attenuation the algorithm achieves (for each kind of first order internal
multiple) was obtained. The first order internal multiples were cataloged, for the purposes of this
analysis, by the place where their downward reflection occurred. Please note that this definition and
analytic study of the attenuation algorithm was performed with the only purpose of understanding
the inner workings of the algorithm. The internal multiple attenuator algorithm does not require
any knowledge of the subsurface properties, neither the distinction between internal multiples, nor
the knowledge of the location where the downward reflection took place. The internal multiple
algorithm is a non-linear data driven algorithm that only requires a reference Green’s function
and the data. The study of the properties of the internal multiple algorithm shed light on the
location and isolation of the higher order terms in the internal multiple elimination series, which
were identified and first studied in (Ramı́rez and Weglein, 2005a) and a leading order closed form
was found and used in the initial tests.

3 Internal Multiple Elimination

The third term in the inverse scattering series: (G0V1G0V1G0V1G0) contains the leading order
contribution for the removal series of 1st order internal multiples. This leading order term is the
internal multiple attenuator. Let’s assume that the actual medium varies only in depth. The 1D
earth and normal incidence wave version (Weglein et al., 2003) of the first order internal multiple
attenuator is

b1(k) = D(ω), (1)

bIM1
3 (k) =

∫ ∞

−∞
dz1e

ikz1b1(z1)

∫ z1−ε2

−∞
dz2e

−ikz2b1(z2)

∫ ∞

z2+ε1

dz3e
ikz3b1(z3), (2)

where k = 2 ω
c0

is the vertical wave number, D(ω) is the temporal Fourier transforms of the measured
scattered field (data), and the superscript IM1 refers to the 1st order internal multiple elimination
series.
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A simple procedure to use and understand the attenuation algorithm in a 1D layered medium is
to send a normal incident spike wave and record the data, D, or scattered field at the receiver
position. Perform a temporal Fourier transform to take the data to ω space. Use the constant
reference velocity, c0, to define the vertical wave number as kz = k = 2ω

co
, and change the variable

ω in D(ω) to k, which defines b1(k) = D(k). Perform a second Fourier transform that brings b1(k)
to pseudodepth z (the pseudodepth is defined in the reference medium as z = c0t

2 ). Introduce b1(k)
into equation(2) and obtain a first order internal multiple prediction.

The attenuation algorithm prediction is performed by a nonlinear combination of three sets of
data. This nonlinear combination predicts the travel time of the true internal multiple in the data.
The amplitude prediction is an estimate of the true internal multiple’s amplitude. The estimate is
always less than the actual amplitude and the error is a factor known as the attenuation factor of
the predicted internal multiple (Ramı́rez and Weglein, 2005a),

(AFP.IM )j =





T01T10 for j = 1

Πj−1
i=1

(
T 2

i i−1T
2
i−1 i

)
Tj j−1Tj−1 j for 1 < j < J

(3)

where j represents the interface where the downward reflection took place, Tj−1 j and Tj j−1 are the
transmission coefficients going down and up through the interface j, respectively, and J is the total
number of interfaces in the model. The interfaces are numbered with integers, starting with the
shallowest location. In a single layer medium, the first order internal multiple has an amplitude of
−T01R2R1R2T10 (see Figure(1)) and bIM1

3 predicts a first order internal multiple with an amplitude
of T01T10R2R1R2T10T01. In agreement with equation (3), the attenuation factor of the predicted
internal multiple is T01T10. The attenuation factor, equation(3), is affected by the history of the
event down to and including only the depth of the shallowest reflection, independent of the place
where the two upward reflections occurred.

*
Source Receiver

 z

T01

T10

 j=1

  j=2
R2 R2

R1

Figure 1: First order internal multiple with downward reflection at j = 1.

The terms in the elimination series use the data to predict multiples and remove them from the
data itself. This removal is highly accurate and it does not affect the primaries in the data, it only
acts on internal multiples. The first order internal multiple elimination series starts with bIM1

3 .
Since bIM1

3 has estimated the internal multiple amplitude attenuated by a factor of (AFP.IM )j , the
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purpose of the higher order terms in the elimination series is to remove the effect of the attenuation
factor. The higher order terms improve the effectiveness of the attenuator, towards the objective of
completely subtract the amplitude of multiples within the data. In order to achieve an elimination
method, the inverse scattering subseries for internal multiples elimination should be able to predict
the true amplitude for these events by correcting the attenuation factor in equation (3).

In the attenuator’s prediction, the factor that multiplies the internal multiples generated at the
first reflector∗, (IM)j=1, is T01T10. This attenuation factor corresponds to the first term in the

Taylor expansion of T01T10

(
1

T01T10

)
= 1,

T01T10

(
1

T01T10

)
= T01T10

1

(1−R2
1)

= T01T10

(
1 +R2

1 +R4
1 +R6

1 + · · ·
)
. (4)

In the attenuator’s prediction, the factor (T01T10)
2T12T21 that multiplies the internal multiples

generated at the second reflector, (IM)j=2, corresponds to the first term in the more complicated
geometric series for:

(T01T10)
2T12T21

(T01T10)2T12T21
= (T01T10)

2T12T21
1

(1−R2
1)

2(1−R2
2)
, (5)

= (T01T10)
2T12T21

(
1 + 2R2

1 +R2
2 + 3R4

1 + 2R2
2R

2
1 +R4

2 + · · ·
)
.

Adding these higher order terms in the elimination series builds a sum of amplitude corrections
that improves the subtraction of internal multiples from the data. The higher order terms generate
amplitude factors that corresponds to the higher order terms in these Taylor expansions, equa-
tions (4) and (5). The higher order amplitude corrections are given by algorithms, found in the
internal multiple elimination series bIM1

3 + bIM1
5 + bIM1

7 + · · · (Ramı́rez and Weglein, 2005a), that
only required measured values of the scattered field and the reference Green’s function.

The second term in the elimination series, b5
IM1 , resides within the fifth term in the inverse series.

It is the first step to move the attenuation algorithm towards an elimination of 1st order internal
multiples, and it is given by

bIM1
5 (k) =

∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′

[
b1(z

′)3 + 2 b1(z
′)

∫ z′−ε

−∞
dz′′′ b1(z

′′′)2

]

×
∫ ∞

z′+ε
dz′′eikz′′b1(z

′′). (6)

The second term in the 1st order internal multiple elimination series can be separated in two parts,

∗We define the generating reflector of a first order internal multiple as the reflector where the downward reflection
took place.
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Triple hit - self interaction
diagram

Triple hit – double self 
interaction diagram

Figure 2: Diagrams for bIM1

51 (upper figure) and bIM1

52 (lower figure).

and represented with the diagrams in Figure(2),

bIM1
51 (k) =

∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′b1(z

′)3
∫ ∞

z′+ε
dz′′eikz′′b1(z

′′), (7)

b525
IM1(k) =

∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′2 b1(z

′)

∫ z′−ε

−∞
dz′′′ b1(z

′′′)2
∫ ∞

z′+ε
dz′′eikz′′b1(z

′′). (8)

Both diagrams affect 1st order internal multiples, with the following particular characteristics:

1. The diagram located at the top of Figure(2) corresponds to equation (7) and it belongs to
a series that eliminates all 1st order internal multiples that were downward reflected at the
shallowest reflector. This term combines nonlinearly five sets of data to give higher order
amplitude information and the correct time. The three hits in the diagram indicate triple
self interaction at the generating reflector. Hence, the extra amplitude information given by
the self-interacting data corresponds to powers of the reflection coefficient of each generating
reflector. The analysis of the properties of this term, using its diagram representation and
numerical example, showed that it is the main contribution of bIM1

5 to the elimination of
internal multiples. Its mathematical representation resembles the one of the attenuator,
which is the leading order term of the series by itself. We can add the attenuator diagram,
the triple self-interacting diagram, and the corresponding diagram in each higher order term
in the elimination series, bIM1

7 + bIM1
9 + bIM1

11 + · · · , where the number in the subscript refers
to the number of times the data is nonlinearly combined with itself. The leading order terms
are represented with the diagrams shown in Figure(3). The sum of these diagrams leads to

187



Inverse scattering internal multiple elimination MOSRP05

the leading order closed form term

bIM1
LO =

∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′

(
1

1− b1(z′)2
)
b1(z

′)

∫ ∞

z′+ε
dz′′eikz′′b1(z

′′). (9)

This equation is the infinite sum of the leading order subseries of the inverse scattering
internal multiple elimination series in a closed form term, bIM1

LO . The leading order eliminator

of internal multiples, bIM1
LO , eliminates all 1st order internal multiples with generated at the

shallowest reflector without requiring a-priori information, nor a velocity model. It is all done
in terms of the effective data, b1, and the reference velocity contained in k = 2ω

c0
. Furthermore,

the leading order eliminator helps to better attenuate all the internal multiples with downward
reflections at deeper reflectors.

Figure 3: Leading order diagrams.

2. The diagram located at the bottom of Figure(2) represents equation(8), which contains

2b1(z
′)
∫ z′−ε
−∞ dz′′′ b1(z

′′′)2 in the middle integral. The data in the middle integral, repre-
sented in the middle part of the diagram, has two self-interacting data above the generating
reflector. The double self interaction gives extra amplitude information of any interface above
the reflector where the downward reflection took place. Since it gives second order corrections
for the overburden of the generating reflector, it only acts on internal multiples downward
reflected at interfaces below the shallowest reflector. It doesn’t act on the internal multiples
generated at the shallowest reflector, which are completely eliminated with the leading order
closed form term in equation (9). The double self-interacting diagram further attenuates
all 1st order internal multiples generated at deeper reflectors†. It starts the subseries of the
internal multiple elimination series that complements the action of the terms contained in

†Where deeper refers to all reflector located below the shallowest one.
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the leading order bIM1
LO . The main part of these second subseries can be summed in a higher

order closed form term,

bIM1
HO =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′

2G1(z
′)
∫ z′−ε
−∞ dz′′′ J(z′′′)

1−
∫ z′

−∞ dz′′′ J(z′′′)

∫ ∞

z′+ε
dz′′eikz′′b1(z

′′). (10)

J(z′′′) =
b1(z

′′′)2

1− b1(z′′′)2
(11)

G1(z
′) =

b1(z
′)

1− b1(z′)2
(12)

Figure 4: Higher order diagrams.

Some of the diagrams included in this closed form are shown in Figure 4. Equation (10)
is the infinite sum of the main terms in the higher order subseries of the internal multiple
elimination series in a closed form term, bIM1

HO . The higher order eliminator, applied after the
leading order, improves the reduction of the remaining multiples. It is including diagrams that
have extra data self-interactions above the generating reflector. The reason it is not including
all the higher order terms is because, these terms in the inverse series for internal multiple
elimination have different integer weights, which means that a specific higher order diagram
is required to act more than ones in the removal process. From the form of equation (10),
the closed form only contains a weighting factor of 2 (please refer to the middle integral)
in agreement to the weighting factor needed by equation 8. The first term included in the
higher order closed form corresponds to equation 8, which represented in the first diagram in
Figure 4.

An elimination algorithm for internal multiples based on inverse scattering series has the potential
of removing difficult internal multiples, leaving all primaries unaffected. Although the internal
multiple amplitudes are reduced by the attenuator, bIM1

3 , and substantially reduced (and a subset
is eliminated) by the leading order closed form, bIM1

LO , there is in some cases an observable residual
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that can be further attenuated with the action of the higher order closed form, bIM1
HO . The higher

order closed form term of the internal multiple elimination series complements the elimination of
the amplitude of the remaining internal multiples by adding nonlinear contributions in terms of
nonlinear combinations of data and a reference Green’s function. The combination of the leading
order closed form with the higher order closed form term gives an improved algorithm for the
removal of internal multiples.

4 2D extension of the algorithm

In the theory presented in the previous section, no assumptions about the earth below the receivers
are made, this characteristic makes it ideal for addressing one of the current challenges in exploration
seismology: removing multiples, locating and identifying targets in highly complex medium, when
the velocity model is unobtainable. Hence, the extension to a multidimensional earth is a necessary
step.

The attenuation algorithm for a 2D earth, presented in Araújo (1994); Weglein et al. (1997) and
Weglein et al. (2003), is

b1(kg, ks, qg + qs) = −2iqsD(kg, ks, ω), (13)

bIM1
3 (kg, ks, qg + qs) =

1

(2π)2

∫ ∞

−∞
dk1e

iq1(xs−xg)

∫ ∞

−∞
dk2e

iq2(εg−εs)

×
∫ ∞

−∞
dz1e

i(qg+q1)z1b1(kg,−k1, z1)

×
∫ z1−ε2

−∞
dz2e

i(−q1−q2)z2b1(k1,−k2, z2)

×
∫ ∞

z2+ε1

dz3e
i(q2+qs)z3b1(k2,−ks, z3), (14)

where ω represents the temporal frequency, c0 is the acoustic velocity of water; kg and ks are the
horizontal wave numbers corresponding to receiver and source coordinates: xg and xs, respectively;
the 2-D wave vectors: kg = (kg,−qg) and ks = (ks, qs) are constrained by |kg| = |ks| = ω

c0
; the

vertical wave numbers are qg = sgn(ω)
√

( ω
c0

)2 − kg
2 and qs = sgn(ω)

√
( ω

c0
)2 − ks

2, and εi is a small

positive parameter chosen to insure that the relations z1 > z2 and z3 > z2 are satisfied.

In equations (18) and (19), the effective data b1(kg, ks, qg +qs) is defined as a source obliquity factor
times the 2D measured values of the scattered field, D. The variable z is the Fourier conjugate to
the sum of the vertical wave numbers, kz = −(qg + qs).

As we show in 1D, the second term in the 1st order internal multiple elimination series can be
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separated in two equations. In 2D, the first equation is

bIM1
51 (kg, ks, qg + qs) =

1

(2π)2

∫ ∞

−∞
dk1e

iq1(xs−xg)

∫ ∞

−∞
dk2e

iq2(εg−εs)

×
∫ ∞

−∞
dz1e

i(qg+q1)z1b1(kg,−k1, z1)

×
∫ z1−ε2

−∞
dz2e

i(−q1−q2)z2 [b1(k1,−k2, z2)]
3

×
∫ ∞

z2+ε1

dz3e
i(q2+qs)z3b1(k2,−ks, z3), (15)

(16)

which have the same diagrammatic representation as shown in Figure(2). Studying the higher order
terms in the inverse scattering internal multiple elimination series in a multidimensional model type
independent form, we find that the form of the terms with self-interacting data at the generating
reflector conserves the properties and characteristics found in the simple 1D case. Analogous to
the 1D case, the first term in the leading order elimination series is the attenuator, equation 19,
and the second term is given by equation 15. The next terms in the leading order series have the
form:

bIM1
51 (kg, ks, qg + qs) =

∞∑

J=1

1

(2π)2

∫ ∞

−∞
dk1e

iq1(xs−xg)

∫ ∞

−∞
dk2e

iq2(εg−εs)

×
∫ ∞

−∞
dz1e

i(qg+q1)z1b1(kg,−k1, z1)

×
∫ z1−ε2

−∞
dz2e

i(−q1−q2)z2 [b1(k1,−k2, z2)]
J

×
∫ ∞

z2+ε1

dz3e
i(q2+qs)z3b1(k2,−ks, z3), (17)

We can add the leading order terms in the multidimensional case to a closed form, which is given
by,

b1(kg, ks, qg + qs) = −2iqsD(kg, ks, ω), (18)

b3(kg, ks, qg + qs) =
1

(2π)2

∫ ∞

−∞
dk1e

iq1(xs−xg)

∫ ∞

−∞
dk2e

iq2(εg−εs)

×
∫ ∞

−∞
dz1e

i(qg+q1)z1b1(kg,−k1, z1)

×
∫ z1−ε2

−∞
dz2e

i(−q1−q2)z2
b1(k1,−k2, z2)

1− b1(k1,−k2, z2)
2

×
∫ ∞

z2+ε1

dz3e
i(q2+qs)z3b1(k2,−ks, z3), (19)

This is a 2D model type independent leading order elimination algorithm for internal multiples.
The leading order eliminator is a data-driven algorithm written in terms of effective data b1 (see
equation (18)). The leading order closed form, bIM1

LO , gives the main contribution towards eliminat-
ing internal multiples. It completely removes all 1st order internal multiples generated at the first
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reflector and improves the attenuation of the remaining multiples. Leading order as an eliminator
means it eliminates a class of internal multiples and further attenuates the rest. In a 2D medium,
the multiples that have no cumulative transmission error (the ones with downward reflection at the
shallowest reflector) are eliminated by the algorithm in equation 19, b1 + bIM1

LO . The higher order
closed form is being examined for a 2D extension. It is not always possible to generalize a 1D
closed form to 2D; an algorithm in 2D have more variables and different dependencies than the
same algorithm in 1D. However, we are studying the 2D expressions for the higher order terms
in the elimination series. For a multidimensional world, the leading order eliminator provides the
removal of all first order internal multiples generated at the first reflector and effectively attenuates
the rest of the multiples.

Numerical Example

Water           c0=1500m/s     

z

Mud/siltstone   c1=2280m/s      

    Basalt           c2=5700m/s     

Sandstone        c3=3700m/s     

 z =800m

 z =2300m

 z =3000m

 z =4600m

Sandstone        c3=4000m/s     

Figure 5: 1D model.

To test the performance of the internal multiple elimination given

2.5
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0 1.5

Attenuator

Figure 6: Attenuation of internal multiples with bIM1

3 .
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by the action of the leading order and the higher order closed forms, bIM1
LO + bIM1

HO , we use a 1D
model, Figure 5, and a spike wave to generate synthetic data. This example was used to illustrate
the performance of the leading order closed form term in Ramı́rez and Weglein (2005a), we now
want to see if the residual multiples can be further eliminated by the addition of the higher order
term. In this model, the reflectors depths were selected to have a negative interference between
the first water bottom multiple and the primary reflected at the deepest reflector, both arriving at
3.5s. The event at 3.5s (the interference between a multiple and a primary) has an amplitude of
0.0311 in the data.

2.5

-2

-3

1 2

-6

-1

-5

0.5

-4

0 1.5

CloseLO

Figure 7: Elimination of water bottom internal multiples with bIM1

LO .
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-6

-1

-5

0.5

-4

0 1.5

Closed

Figure 8: Elimination of water bottom internal multiples with bIM1

LO + bIM1

HO .

In Figure 6 we have data with primaries and 1st order internal multiples (on the leftmost traces).
The inner traces are the output of the attenuator, it gives the first order estimate of the amplitude
(with opposite sign) and the correct time prediction. The traces on the right side of Figure 6
are the primaries and the residual multiples after adding b1 + bIM1

3 . The amplitude at 3.5s, after
attenuating the multiple is 0.0657. On the left side of Figure 7 we show the same data, the
inmost traces are the output of bIM1

LO . On the right side of Figure 7 the multiples generated at the
shallowest reflector were removed, the output traces are primaries and small residual of multiples
with transmission error above the depth of their downward reflection, after adding the data to the
leading order eliminator, b1 + bIM1

LO . The amplitude at 3.5s, after eliminating the water bottom
multiple is 0.0686, corresponding to the true amplitude of the primary reflected at the fourth
interface.

The interfering internal multiple has been eliminated. On the left side of Figure 8 we show the
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same data, the inmost traces are the output of bIM1
LO + bIM1

HO . On the right side of Figure 8, the
multiples generated at the shallowest reflector have been removed and the remaining multiples
were attenuated a little bit more. However, since we had a negative interference between a multiple
and a primary, and the primaries are the subevents responsible of the amplitude prediction in the
algorithm, we observe that the improvement provided by bIM1

HO is minimum compared with the

effect of bIM1
LO in the elimination. In other words, it has been shown that the attenuator (see for

example Weglein et al. (2003); Nita and Weglein (2005)) and the leading order eliminator (Ramı́rez
and Weglein, 2005a) that the internal multiples are constructed by considering three effective data
sets b1 and searching for a set of events which satisfy the lower-higher-lower relationship in their
pseudo depths. Having found those events, the algorithms combine their amplitudes and phases
in a non-linear sense. The nonlinear combination of phases gives the travel time prediction, which
perfectly agrees with the actual travel time.

If the amplitude of an event in the data is affected by interference with another event, it will also
affect the effectiveness of the prediction. However, the interfering events did not confuse or damage
the main output of these algorithms, i.e. all the first order internal multiples were predicted with
the correct travel time. In this example, the higher order closed form made an improvement. The
higher order closed form, which is applied after the leading order, captures some of the remaining
terms in the series but not all of them. This algorithm also predicts the exact travel time of the
internal multiples and gave extra amplitude information to move towards the goal of elimination.
It gave extra contributions to remove the residual multiples (left after the action of bIM

LO ). However,
this contribution was smaller, compared to the reduction the same algorithm provides when there
is no interference. I n comparison with the action of the leading order eliminator on multiples
generated at the shallowest reflector, the higher order outcome is small; but its contribution has a
positive impact. The derivation and objective of the new algorithm is to add value and go beyond
the capability of the internal multiple attenuator.

There is an important subset of first order internal multiples that is now eliminated, and other
internal multiples are reduced beyond attenuation. The former subset in practice can often be
the most significant from a practical field viewpoint. The removal automatically eliminates those
multiples that have their first reflection at the shallowest reflector, the water bottom, in marine
exploration, and degree of addition benefit beyond that to shallower multiples depends on the
detail of the specific situation. The water bottom property is neither required nor determined
for this eliminator algorithm, nor is information below the water bottom input to provide that
ancillary benefit. The degree of the latter secondary benefit will vary but is always present. These
examples exemplify these benefits and characteristics of the new algorithm. The fact that the new
algorithm is not at all more expensive than the attenuator is worth noting. The sensitivity of
the new algorithm for input wavelet information will be examined in a future contribution, but
new direct methods such as, e.g., Guo et al. (2005) and over under cable advances will allow e.g.
Weglein and Secrest (1990) are anticipated to match that need.

Let’s observe the output of a different example, shown in Figure 9. On the left side of Figure 10,
the traces are data with primaries and 1st order internal multiples, the traces in the middle are the
output of the attenuator and the traces on the right are the residual after adding b1 + bIM1

3 .
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Figure 9: 1D model.
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Figure 10: Attenuation of internal multiples with bIM1

3 .
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Figure 11: Elimination of water bottom internal multiples with bIM1

LO

On the left side of Figure11 we observe the data with primaries and first order internal multiples.
The inner traces are the output of the leading order closed form, bIM1

LO , it leaves all primaries
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Figure 12: Elimination of water bottom internal multiples with bIM1

LO + bIM1

HO

unaffected and eliminates the internal multiples generated at the first reflector; the traces on the
right side are the primaries and the residual multiple after adding b1 + bIM1

LO . In Figure 10, the
traces on the left show the same data, the traces in the middle are the output of the leading order
closed form plus the higher order closed form, and the traces on the right are the residual after
adding b1 + bIM1

LO + bIM1
HO . We observe that the higher order closed form has improved the removal

of internal multiples.

Conclusions

In many circumstances the first order term in the inverse scattering internal multiple series, known
as the attenuator, provides an effective solution (Weglein et al., 2003). It predicts the correct
arrival time and attenuates the amplitude of the internal multiples in the data. However, there
are situations for towed streamer pressure measurements where either the residual can be far from
small (e.g. converted wave internal multiples) or where a small residual interferes with a target
primary, and the latter is itself small. In these cases, the attenuation is not enough and we need
to seek for algorithms that provide an elimination of these events in the data.

This work shows progress in the identification, analysis and mathematical manipulation of higher
order terms in the series for internal multiple elimination, where the first term is an attenua-
tor (Araújo, 1994). These higher order terms in the series add higher order contributions to the
attenuator to improve its effectiveness towards an elimination of internal multiples. The algorithm
presented is based on inverse scattering, and it goes further in the removal of first order internal
multiples. Two closed forms were obtained and used in examples. The first one, adds the leading
order terms elimination subseries and it is an algorithm that completely eliminates all first order
internal multiples generated at the first reflector. The second closed form adds the main contri-
bution of the higher order terms. It shows a better estimate of the amplitudes and provides an
improvement towards the elimination of 1st order internal multiples. In this theory, no assumptions
about the earth below the receivers are made.

The examples presented in this report, show value when going further in the inverse series for
1st order internal multiple elimination. However, they show that the effectiveness of the higher
order closed form can be affected by interference of the events in the data, decreasing its extra
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contribution. This is due to the fact that the elimination algorithms use events in the data to obtain
the travel time and amplitude of the internal multiples. If a primary in the data is interfering with
a multiple, then it appears to have an amplitude different to the actual one. Hence, when it is used
as a subevent in the multiple elimination algorithm, the amplitude prediction is also affected by
that interference.

The analytic study of the multiple elimination algorithms were performed with the only purpose
of understanding the inner workings of the algorithm. The internal multiple elimination algorithm
does not require any knowledge of the subsurface properties, neither the distinction between internal
multiples, nor the knowledge of the location where the downward reflection took place. The internal
multiple algorithm is a non-linear data driven algorithm that only requires a reference Green’s
function and the data.

The extension to a multidimensional earth was achieved for the leading order closed form term.
The leading order eliminator provides the removal of all first order internal multiples generated
at the shallowest reflector and effectively attenuates the rest of the multiples. The extension to a
multidimensional earth of the higher order terms as well as extensions of definitions is our current
subject of study.

Acknowledgments

We acknowledge and thank the sponsors and members of M-OSRP for the support of this research.
We have been partially funded by and are grateful for NSF-CMG award DMS-0327778 and DOE
Basic Sciences award DE-FG02-05ER15697.

References
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A comparison of the imaging conditions and principles in depth migration
algorithms

Bogdan G. Nita, Department of Mathematical Sciences, Montclair State University

Abstract

Seismic migration/inversion is presently the most used method for determining the structure
and properties of the sub-surface in seismic exploration for hydrocarbons. Roughly speaking,
determining the location of abrupt changes in medium’s parameters involves, in one form or
another, an imaging principle which can simply be stated by equating a component, or the
full value of the travel-time t, with zero. Depending on the domain of definition of the imaged
data, i.e. space-frequency or wavenumber-frequency, the imaging step has different implications,
capabilities and produces different results. We analyze this principle for the depth migration
procedures and point out that the space-frequency algorithms imply a total travel-time condi-
tion t = 0 while the wavenumber-frequency algorithms imply vertical intercept time condition
τ = 0. We present two analytic examples of the most common migration algorithms for both do-
mains, i.e. f−k migration for the wavenumber-frequency and Kirchhoff for the space-frequency
algorithms, and discuss the implications of these differences.

1 Introduction

Seismic migration represents the shifting and focusing of the recorded reflections to their true po-
sition thus creating an image of the sub-surface under investigation. Most of the depth migration
algorithms can be viewed as a two-step procedure in which the geophysical data is first downward-
extrapolated to any depth and then imaged to its correct location by using an imaging principle.
Depending on the domain in which the second step (imaging) is performed the algorithms can
be divided into two broad categories: 1. space-frequency algorithms e.g. Kirchhoff (Schneider,
1978), 15◦ finite differences (Claerbout, 1981) etc. and 2. wavenumber-frequency algorithms e.g.
phase-shift migration (Gazdag, 1978), f − k migration (Stolt, 1978) etc. In this paper we com-
pare the imaging step involved in these two types of algorithms and point out that the imaging
condition in the space-frequency domain amounts to imposing a zero total travel time condition
t = 0, while the imaging condition in the wavenumber-frequency domain amounts to imposing zero
vertical intercept time condition τ = 0. The two categories of migration algorithms have been
illustrated through numerical results extensively in the literature, see e.g. Yilmaz (2001). Rather
than providing redundant numerical instances, we find it useful to present two analytic examples
which show some of the similarities and differences between the two types of algorithms. Given
the wide application of the migration algorithms, it is important to have a good grasp and un-
derstanding of the mathematics and physics associated with their formulation. This in turn leads
to a better understanding of their capability and consequently to the development of more accu-
rate and complete imaging methods. This research impacts not only the migration methods but
also other algorithms which implicitly use an imaging principle in their formulation, e.g. inverse
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g yg z g( ), ,xs sy sz( ), , x

Figure 1: A typical seismic experiment over a multi-dimensional earth.

scattering methods and in particular internal multiple attenuation and imaging algorithms (see
Weglein et al., 2003). We begin by describing the relationship between spherical waves and their
Fourier planewave decomposition and concentrate on understanding the geometry and elements
of one planewave component. We then briefly review two of the most common migration algo-
rithms representative for the wavenumber-frequency and space-frequency domains, namely f − k
migration and Kirchhoff migration. We finally provide analytic examples for acoustic 1.5-D models
emphasizing the imaging step in each of the two procedures. Conclusions are drawn in the last
section.

2 Spherical waves and Fourier planewave decomposition

A typical seismic experiment involves man-made sources, of acoustic or elastic disturbances, and
receivers, to capture these disturbances after traveling through the earth and interacting with
different internal structures (see Figure 1). For a 3-dimensional acoustic inhomogeneous medium,
with sources and receivers located on the earth surface at zs = zg = 0, and with the horizontal
coordinates xs = (xs, ys) and xg = (xg, yg) respectively, the propagation of the waves through the
medium is described by the Helmoltz equation

∇2P − 1

c2
∂2P

∂t2
= −4πδ(xg − xs)δ(t) (1)

where P represents an acoustic wave propagating through an inhomogeneous medium whose spa-
tially varying velocity is given by the function c. The homogeneous space (c = c0) solution or the
direct arrival can be described by

Ph(xg, 0,xs, 0, ω) =
e
iω R

c0

R
(2)
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where R = ‖xg − xs‖ =
√

(xg − xs)2 + (yg − ys)2 represents the distance between the source and
receiver. Solutions corresponding to other arrivals can be obtained by adding boundary conditions
describing the internal structure of the medium under investigation. For each abrupt change in
the medium parameter, or interface, the incoming wave is broken down into a reflected and a
transmitted wave, which satisfy the continuity conditions with regards to pressure and displacement.
The recorded data

D(xg,xs, ω) = P (xg, 0,xs, 0, ω) (3)

consists in all possible sesmic arrivals which result from such internal interactions.

Equation (1) can also be solved using Fourier transform methods (see e.g., Aki and Richards, 2002)
to obtain the solutions in the Weyl integral form. The homogeneous solution will then have the
form

Ph(xg, 0,xs, 0, ω) =
1

2πi

∫ ∞

−∞
dkg

∫ ∞

−∞
dks

ei(kg·xg−ks·xs)

kz
(4)

where kg = (kxg, kyg), ks = (kxs, kys) and we used different sign convention for the Fourier trans-
form over the source and receiver coordinates. Here kz = qs + qg with qs and qg being the vertical
source and receiver wavenumbers respectively, satisfying the dispersion relationships

q2g + ‖kg‖2 = q2s + ‖ks‖2 = ω2/c20. (5)

This solution can be interpreted as a continuous summation over all planewaves described by the
horizontal wavenumbers kg and ks. Each individual planewave satisfies the Fourier transformed
Helmoltz equation and, in the presence of boundary condition, can be interpreted as the medium
response to incoming planewaves. The data in this case will be the set of collected planewave events
on the measurement surface and will be expressed through

D̃(kg,ks, ω). (6)

It is not difficult to see that the relationship between D and D̃ is

D(xg,xs, t) =

∫ ∞

−∞
dω

∫ ∞

−∞
dkg

∫ ∞

−∞
dkse

−i(ωt−kg·xg+ks·xs)D̃(kg,ks, ω). (7)

Notice that, to construct the point-source/point-receiver response, all the horizontal wavenumbers
dependent planewave components are needed. The same is not true, for example, for a ray ap-
proximation where each event in the point-source/point-receiver response is approximated by one
ray-like diagram. In the next section we discuss one planewave component and look at its geometry,
propagation and ways of characterizig its turning point or reflection from an interface.

3 The geometry of planewaves

Figure 2 shows a planewave component with the typical quantities attached to it, i.e. the angle
of incidence θ, the ray perpendicular to the wavefront indicating the direction of propagation, the
velocity of propagation of the planewave c0 and the vertical and horizontal intercept velocities cv
and ch. The intercept velocities are dependent on the incidence angle θ and usually are larger than
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c0 (with the exception of vertical or horizontal propagation in which case one of them is equal to
c0 and the other is zero) and for oblique incidence have the expressions

ch =
c0

sin θ
(8)

and
cv =

c0
cos θ

. (9)

The quantities 1
ch

and 1
cv

and called the horizontal and vertical slowness respectively and are denoted
by p and q. The wavefront of the planewave can be viewed as an infinite line in the z − x domain
having the equation

z = z0 − x tan θ (10)

where z0 is the intercept between the front of the planewave and the vertical axis. To indicate
that the planewave is moving downward it is necessary to have only this z-intercept advance on
the vertical axis as

z = cvt− x tan θ, (11)

where t is the traveltime, or

z = c0
t

cos θ
− x tan θ. (12)

Solving for the total travel-time from equation (12) we find

t = z
cos θ

c0
+ x

sin θ

c0
. (13)

The quantity

τs = z
cos θ

c0
(14)

is called the vertical intercept time and has the units of time (seconds). The subscript s indicates
the fact that the quantity is specific to the source-reflector leg. A similar expression, possibly with
a different reflection angle, can be written for τg, the vertical time for the reflector-receiver leg.
The total vertical time for the planewave seismic event is defined as

τ = τs + τg. (15)

In terms of the vertical time τs and the horizontal slowness p defined above equation (13) can now
be re-written as

t = τs + xp. (16)

Equation (13) describes the time at which the planewave will pass any (x, z) point in the 2-
dimensional plane. To describe the time shift of this planewave as it moves along its ray from the
source to the receiver, we represent the planewave as

φ = e−iω(t−t0) = e
−iω(t−z cos θ

c0
−x sin θ

c0
)
. (17)

A similar expression can be written for the reflector-to-receiver leg of the planewave propagation.
Comparing this relation with the kernel of the Fourier transform in the expression (7) we discover
the relations between the horizontal wavenumbers and the incidence angle

sin θ =
‖ks‖
ω/c0

(18)
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Figure 2: A plane wave component: downgoing ray and wavefront.

and
cos θ =

qs
ω/c0

. (19)

Eliminating the angle between equations (19) and (14) we find

τs = z
qs
ω
. (20)

Similarly for the reflection-receiver leg we can write

τg = z
qg
ω

(21)

or, after adding the two equations

τ =
kzz

ω
. (22)

As expected, the vertical intercept time of a planewave is only dependent on the vertical wavenum-
ber kz, the depth coordnate z and the frequency ω.

The importance of equation (22) comes from the fact that the expression kzz is the phase used to
downward extrapolate planewave components in wavenumber-frequency seismic depth migration.
Such a relation shows that the time component which varies in the downward extrapolation step is
the vertical intercept time and it also offers a hint for interpreting the integration over frequency in
the imaging principle. This concept along with the imaging conditions in wavenumber-frequency
and space-frequency domains will be discussed in the following sections.
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4 Pre-stack depth migration algorithms

We start with the data set D(xg|xs; t) depending on the source and receiver horizontal coordinates
xs = (xs, ys) and xg = (xg, yg) and the total travel-time t measured from the source’s explosion.
For simplicity we assume that both sources and receivers are located on the earth’s surface at depth
z = 0. The data can then be represented as a wavefield P such that

P (xg, 0|xs, 0; t) = D(xg|xs; t). (23)

To downward extrapolate this wave field we first Fourier transform it to the wavenumber-frequency
domain

P (kg, 0|ks, 0;ω) =

∫
dxgdxsdte

i(ωt−kg·xg+ks·xs)P (xg, 0|xs, 0; t), (24)

where we used different sign conventions for Fourier transforms over source and receiver coordi-
nates. In the formula above kg = (kxg, kyg) and ks = (kxs, kys) are the horizontal wavenumbers
associated with the source and receiver horizontal positions xs and xg respectively. The effect of
these transformations is a mono-chromatic planewave decomposition of the recoded signal. The
quantity P (kg, 0|ks, 0;ω) can be viewed as the medium’s response, recorded on the measurement
surface, due to a set of planewaves characterized by the frequency ω and the horizontal wavenum-
bers ks (from the source surface to the reflector) and kg (from the reflector to the measurement
surface). The wavefront of any such planewave is an infinite plane in the xyz space whose upward
or downward propagation is described by the advance of the z−intercept on the vertical axis. In
other words, in the wavenumber-frequency domain, the phase of any event will account only for this
up-down propagation. As a consequence, the planewave response can be downward extrapolated
by using a phase-shift operator on the vertical component only

P (kg, z|ks, z;ω) = P (kg, 0|ks, 0;ω)eikzz (25)

where, as before, kz = qs + qg and qs and qg are the medium dependent vertical source and receiver
wavenumbers respectively. As emphasized earlier, since the only space component that varies in the
downward extrapolation process is the z-intercept, it is clear that the only variable time component
is the vertical intercept time τ (see equation (22))

τ = kzz/ω. (26)

Summing over all frequency components, by performing either an integral over ω, (Gazdag, 1978),
or over kz, (Stolt, 1978), while the data is in the wavenumber-frequency domain is thus equivalent
to a vertical intercept time τ = 0 imaging condition. The last step in the migration procedure is
an inverse Fourier transform over the horizontal wavenumbers to convert the imaged data back to
the space domain. The result of this transformation is an image, denoted I1, of the subsurface

I1(x, y, z) =

∫
dkgdkse

i(kg−ks)·xdωP (kg, z|ks, z;ω). (27)

where x denotes the horizontal position vector (x, y). The full migration procedure can hence be
written as

I1(x, y, z) =

∫
dkgdkse

i(kg−ks)·xdωeikzz

∫
dxgdxsdte

i(ωt−kg·xg+ks·xs)D(xg|xs; t). (28)

204



Imaging conditions and principles in depth migration MOSRP05

To obtain a version of this migration procedure in the space-frequency domain we re-arrange the
order of integration in formula (28) while keeping the data in the frequency domain to obtain

I2(x, y, z) =

∫
dxgdxsdωD(xg|xs;ω)

∫
dkgdkse

i(kzz−kg·(xg−x)+ks·(xs−x)). (29)

The last set of integrals over the horizontal wavenumbers is usually evaluated using a stationary
phase approximation (see e.g., Bleistein and Hendelsman, 1975) to obtain an approximative mi-
gration formula commonly called Kirchhoff migration, see e.g. Schneider (1978) and Stolt and
Benson (1986). Formula (29) describes a weighted summation along diffraction hyperbolas in the
original data. Since the data is now in the space-frequency domain, the phase of each event must
account for both vertical and lateral propagation. This implies that an integration over frequency
is equivalent to a total travel-time, t = 0, imaging condition.

The re-arrangement of integrals and their calculation in a different order have a significant effect,
producing a different result in the two migration versions, and consequently a different image. This
can be easily seen from the dispersion relations (5). For the wavenumber-frequency migration de-
scribed by formula (28), the integral over ω is performed while keeping the horizontal wavenumbers
constant. In this case, we can think of (kg,ks, ω) or (kg,ks, kz) as independent variables. It also
implies that the vertical wavenumber kz varies as a function of ω when performing the imaging
step while kg and ks remain constant. For the space-frequency migration described by formula
(29) the inner most integrals in kg and ks are performed while keeping the frequency constant.
This implies that kg, ks and kz are no longer independent and one has to consider kz as a function
of both kg and ks. Approximating the inner most integral in equation (29) using high frequency
approximations (as one usually does in Kirchoff migration) results in a ray-path assumption for the
seismic events and imposes a well defined relationship between the wavenumbers and frequency.
This relation is used when integrating over frequencies and hence performing the imaging step
in the space-frequency migration. These concepts will be made clearer in the analytic examples
discussed below.

Imaging with the vertical intercept time τ = 0 and with total travel-time t = 0 and the relation with
the inverse scattering internal multiple attenuation algorithm was discussed by Nita and Weglein
(2004) and Nita and Weglein (2005). They show that 1. the constant velocity pre-stack migration
built into the algorithm is using a τ = 0 imaging condition and 2. the pseudo-depth monotonicity
condition can be translated into vertical time monotonicity. Both conclusions, along with the
present research, are significant in understanding the efficiency, capabilitites and limitations of
the multiple attenuation algorithm and its different castings in other domains. The two analytic
examples described below will further point out the advantages of using the τ = 0 condition, or
more generally, a wavenumber-frequency depth migration procedure.

5 Analytic example: wavenumber-frequency domain migration

Consider a one-dimensional model consisting of two half-spaces with the interface located at
depth za (see Figure 3). The space-frequency domain data, D(xh;ω), or the associated wavefield,
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Figure 3: The model for the analytic 1.5D example.

P (xh, 0;ω), for such an experiment can be expressed as

P (xh, 0;ω) =
1

2π

∞∫

−∞

dkh
R(kh)

ikz
eikhxhe−ikzza (30)

(see e.g., Aki and Richards, 2002), where R is the angle dependent reflection coefficient. Depending
on the offset xh this expression includes the primary (pre- or post-critical reflection) and the
headwave. In applying the f − k migration algorithm to the data, we make use of a slightly
modified migration operator which is defined in terms of the time derivative of the space-time
domain data rather than the data itself (see e.g. Stolt and Benson, 1986). In the frequency domain
this amounts to multiplying by an iω factor and hence use the modified data

P ′(xh, 0;ω) =
ω

2π

∞∫

−∞

dkh
R(kh)

kz
eikhxhe−ikzza . (31)

Fourier transforming over the space coordinate we obtain

P ′(kh, 0;ω) =
ω

kz
R(kh)e−ikzzaδ(kg − ks). (32)

We next apply a phase-shift on both the source and receiver depth coordinates and obtain

P ′(kh, z;ω) =
ω

kz
R(kh)eikz(z−za)δ(kg − ks). (33)

Notice that, consistent with the previous analysis, the phase of the events contains information only
about vertical propagation (and hence vertical intercept time τ). Applying the imaging condition
by integrating over frequency we find

I1(kh, z) = R(kh)δ(kg − ks)

∫
dω

ω

kz
eikz(z−za). (34)

It is obvious at this point that the integral over ω will produce a delta like event at the correct
depth za. However we can change the variable of integration from ω to kz hence switching from
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Figure 4: Post-critical data consisting of a reflection and a headwave arrival.

plain phase-shift migration to f − k migration. The relationship between ω and kz is

ω =
kzc

2

√
1 +

k2
h

k2
z

(35)

and so we also have
ω

kz
dω =

c2

4
dkz. (36)

With this change of variable, and after integrating over kz, the last integral becomes

I1(kh, z) = R(kh)δ(kg − ks)
c2

4
δ(z − za). (37)

This last formula shows that the wavenumber-frequency domain migration procedure with the
vertical intercept time τ = 0 imaging condition has placed the angle dependent reflection coefficient
at the correct depth for all pre-critical, post-critical and critical events. An additional inverse
Fourier transform may be performed to obtain the image in (x, z) space.

6 Analytic example: space-frequency domain migration

For the second example we use the same model described above (see Figure 3). As before we start
with the data in the space-frequency domain

D(xh, ω) =
1

2π

∞∫

−∞

dkh
R(kh)

ikz
eikhxhe−ikzza . (38)

The integral above can be approximated using a stationary phase formula to obtain (see e.g. Aki
and Richards, 2002)

D(xh, ω) =
R(xh)

d0
e−iωtR +A(xh, ω)e−iωtH . (39)
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In this equation the first term describes the seismic reflection and the second the headwave which
exists for post-critical offsets only (see Figure 4). In the first term, the reflection coefficient R is
a function of offset xh, d0 represents the total distance from the source to the reflector and to the
receiver along a ray-like path and tR = d0/c0 represents the total travel-time. In the second term
A is an amplitude factor which has the approximate value

A(xh, ω) =
i

ω

c20(
1− c20/c21

) 1

r1/2L3/2
, (40)

with L being the length of the propagation path of the headwave along the interface, and

tH = dc/c0 + L/c1, (41)

is the total travel-time for the headwave arrival, with dc being the total distance from the source to
the interface and back to the receiver along the critical ray path (see Figure 4). Notice that in the
expression (39), consistent with the previous analysis, the phase of each event contains information
about the total travel-time of that arrival; this is a direct consequence of expressing the data in the
space-frequency domain.

We next apply equation (29) to the data described by equation (39) and find

I2(xh, z) =

∫
dxhdωD(xh;ω)

∫
dkhe

i(khxh+kzz). (42)

Notice that kz and kh are no longer independent variables and, in fact, we can consider kz to be a
function of kh described by the dispersion relations. The inner most integral is approximated using
the stationary phase formula ∫

dkhe
if(kh) ≈

√
2πi

f ′′(k0
h)
eif(k0

h) (43)

where k0
h is the stationary point for f(kh) found by solving f ′(kh) = 0. For our discussion the

function f is

f(kh) = xhkh + z
√

(ω/c0)2 − k2
h. (44)

Solving the equation f ′(k0
h) = 0 we find the stationary point k0

h to be

k0
h =

ωxh

c0d
(45)

where d =
√
x2

h + z2. The values of the function f and of its second derivative f ′′ at this stationary

point are f(k0
h) = ω

c0
d and f ′′(k0

h) = − c0d3

ωz2 respectively. Putting all these in formula (42) we find
the inner most integral to be

∫
dkhe

i(khxh+kzz) ≈ z

d

√
2πω

ic0d
e
i ω

c0
d

(46)

and so the image I2 becomes

I2(xh, z) =

∫
dxhdωD(xh;ω)

z

d

√
2πω

ic0d
e
i ω

c0
d
. (47)
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With the data given by equation (39) the migration procedure yields

I2(xh, z) =

∫
dxh

R(xh)

d0

z

d

√
2π

ic0d

∫
dω
√
ωe

i ω
c0

(d−d0)
+

∫
dxh

z

d

√
2π

ic0d

∫
dω
√
ωA(xh, ω)e

iω
“

d
c0

−tH

”

.

(48)
The main conclusions inferred from the equation above are that, first, the integration over the
frequency ω amounts to a total travel-time imaging condition t = 0 and, second, the imaging step
places the reflection at the correct and the headwave at the incorrect spatial location. Imaging
with t = 0 is a direct consequence of the domain of the imaged data, in this case space-frequency,
and, even for simple cases, creates false images.

7 Conclusions

In this paper we discuss the application of the imaging principle in depth migration algorithms and
its dependence on the domain in which it is applied. We show that an integration over the frequency
amounts to a total travel-time t = 0 condition when the data is in the space-frequency domain and
to a vertical intercept time τ = 0 condition when the data is in the wavenumber-frequency do-
main. We describe two of the most common depth migration methods representative of the two
imaging domains and show that even though their formulation is similar (compare equations (28)
and (29)) involving, besides approximations, only a different integration order, the results can be
very different. The two analytic examples we discuss emphasize one important distinction in their
ability to handle refracted events (headwaves). This research provides new insights into the math-
ematical formulation and physical interpretation of depth migration algorithms. Understanding
the differences and capabilities of the imaging principles is the key to developing more accurate
and complete imaging methods. The results described in this paper impact not only the migration
schemes but also others which use the imaging principle implicitly, e.g. inverse scattering methods
and in particular the internal multiple attenuation algorithm.
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A sub-event interpretation of the non-linear equations of daylight imaging

Kristopher A. Innanen

Abstract

The underlying equations of daylight imaging (in particular of Claerbout, 1968), in addition
to many variants of data-driven free-surface and internal multiple elimination methods, are non-
linear, but low-order, in the input data. The latter are often discussed, both anecdotally and
in the literature, within the framework of a sub-event interpretation, that links the events of
the processing output (multiples) with the generative events of the processing input (primaries
and lower-order multiples). Such an interpretation is possible and, in at least a heuristic way,
valuable for the former also. For instance, early-time events of a reflected data set, constructed
from non-linearly combined transmitted data sets, are seen to require “hidden” infinite series
and the contribution of events spanning the full time of the input data.

1 Introduction

Many contemporary processing techniques for seismic data involve operations that are non-linear
(although perhaps low-order) in the input data. For instance this is a hallmark of all flavors of
free-surface multiple removal (e.g., Weglein et al., 1997; Verschuur et al., 1992), internal multiple
attenuation (Weglein et al., 1997), and, furthermore, the interrelation of reflected and transmitted
wave field responses that underlies the equations of acoustic daylight imaging (Claerbout, 1968;
Wapenaar, 2003; Schuster, 2004; etc.). The multiple methods have benefited heuristically and
practically by having had associated with them a “sub-event” interpretation (e.g., Weglein and
Matson, 1998). An inter-data non-linearity within a processing routine means, in practice, a
multiplicative combination of the amplitudes of events in the data, and a summed combination
of the phases of these events. The phase of a first-order free-surface multiple, for instance, is
constructible via the sum of the phases of two primaries. The consideration of non-linear processing
algorithms as such contributes to an intuitive understanding of their behavior. Furthermore, an
elucidation of the sub-event model with simple analytical examples goes even further to this end; the
sub-event and 1D normal incidence, single-layer analytic example of Weglein and Matson has been
sufficient to capture much of the core behavior of the full theory of internal multiple attenuation
(discussed in greater detail by, e.g., Nita and Weglein, 2005).

A sub-event interpretation of the equations of daylight imaging, similar to that of the multiple
methods, is possible; in fact, as I demonstrate in this note, it is not unreasonable to think of these
equations themselves as being a different kind of non-linear “multiple method”. The result is a
heuristic model for the mechanics by which specific subsets of the events in a transmitted seismic
data set may non-linearly interact to produce specific reflection events. Beyond this, I will point
out at least one aspect of these equations that may not be immediately obvious from a study of
the mathematics of the construction in the absence of such a heuristic.
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2 Reflected and transmitted data over a single layer

To begin with I consider two data sets arising from a plane source normally incident upon a single
layer, the top interface of which is chosen to be coincident with the receiver. The interfaces are
considered to be step changes in impedance, the exact nature of which is not relevant to the phase
issues at hand, but which give rise to reflection coefficients that then appear in the data. A reflection
data set is generated by placing the source plane such that it is coincident with the receiver plane,
at the top interface of the layer (Figure 1); a transmission data set is generated by placing the
source plane coincident with the bottom interface (Figure 2). Foregoing, as indicated, a particular
consideration of the amplitudes as they relate to reflection/transmission coefficients, but labelling
them unambiguously, the reflected data, transmitted data, and conjugate transmitted data, in the
frequency domain, are given by

R(ω) = Pre
i2 ω

c1
z1 +M1

r e
i4 ω

c1
z1 +M2

r e
i6 ω

c1
z1 + ...

T (ω) = Dte
i ω

c1
z1 +M1

t e
i3 ω

c1
z1 +M2

t e
i5 ω

c1
z1 + ...

T ∗(ω) = D∗
t e

−i ω
c1

z1 +M1∗
t e

−i3 ω
c1

z1 +M2∗
t e

−i5 ω
c1

z1 + ...

(1)

Figure 1 illustrates the events that arise from these two experiments, in the former, a single pri-
mary followed by a train of “surface-related” reverberations, and in the latter, a single direct wave,
again followed by a train of reverberations. Claerbout’s equations of daylight imaging, and the
surface-related multiple prediction/elimination equations, both reduce to very simple non-linear
data computations in the presence of media/experimental configurations as simple as those under-
taken here. The aim in this letter is to carry these calculations out and make what comments may
be made.

3 Free-surface multiple prediction: sub-event data activity

I begin in this section by discussing the (well-known) sub-event interpretation of the free-surface
multiple prediction algorithm in regular use (in its multidimensional forms, of course) in the indus-
try. Most derivations of the methodology express the output (predicted) multiples as an infinite
series in the input data (with primaries and multiples), truncated at the term that is second order
in the data; a form of optimization then occurs to compensate for this truncation as well as, for
instance, the lack of prior knowledge of the source wavelet (e.g., Verschuur, 1992). In the full
wave-theory derivation behind the inverse scattering series approach (Weglein et al., 1997), with a
prior estimate of the source wavelet and the computation of up to the n’th term in the series no
subtraction process is required up to the n’th order multiple. The normally utilized second order
truncation followed by optimization leads to the framework of “prediction and subtraction” tasks
of surface-related multiple processing. In this note I pay no attention to the “subtraction” portion
and focus entirely on the phase aspects of this brand of non-linear processing for second and third
order series truncations. As such, the finished products of the non-linear processing are defined to
be M (2), the nominally computed multiple prediction that is second order in the measured data,
and M (3), the third-order term that is the data convolved with M (2). In the presence of a wavelet,
which I do not consider here, these quantities are in error in amplitude and in phase.
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At this near-trivial level of complexity, the first quantity of interest is simply the product of the
reflected data with itself, thus:

M (2)(ω) =R(ω)R(ω)

=
[
Pre

i2 ω
c1

z1 +M1
r e

i4 ω
c1
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]2
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meanwhile the second quantity is

M (3)(ω) ≈M (2)(ω)R(ω)
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This second quantity is, ultimately, added to the first after weighting by (1) the inverse source
wavelet and (2) an obliquity factor, if the wave-theory based algorithm (Weglein et al., 1997) is
used; the full problem involves the construction and weighted addition of the full series M (n). The
purpose here is to point out several facets of this term-by-term construction; these points will
be set in contrast to the sub-event interpretation of the Claerbout equations in the next section.
The points can be easily verified from inspection of equations (2) and (3), since the provenance of
sub-event contributions is visible through the event amplitudes, which are “labelled”.

1. The multiple prediction M (n), as n grows, is the last term to include a contribution to the
n− 1’th order multiple (for instance, M (3) has no contribution at the phase of the first-order
multiple). No finite-order multiple requires an infinite number of computed terms for its
construction/elimination.

2. At any order, no contribution to any multiple prediction/elimination is an infinite series.
Rather, at that n, the set of all sub-events whose sum-of-orders is equal are collected and
summed to contribute to a specific multiple. Especially at low orders, this is generally a small
selection of data events.

4 Transmission-to-reflection response mapping: sub-event data activity

The Claerbout equations underlying acoustic daylight imaging, which in essence compute a reflec-
tion data set, as defined in the first section, from the cross-correlation of two transmission data
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sets, have been extended to multiple dimensions through the use of reciprocity relations and certain
assumptions regarding the phase of the recorded wave field (see previous references). There are
mechanical similarities between this procedure and the surface multiple construction/elimination
procedure discussed in the previous section. A sub-event interpretation of this mapping highlights
these similarities, and also outlines some interesting differences.

There is no infinite series to be computed (i.e., approximated) in the transmission-to-reflection
data mapping; the procedure requires a single second-order operation on the transmitted data.
Using the data generated in section 2, the construction of the physically meaningful “side of the
autocorrelation of the seismogram”, (Claerbout, 1968), R(ω) = T (ω)T ∗(ω), is, in detail,
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e
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︸ ︷︷ ︸
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+ ...

(4)

As in the case of the surface-related multiple prediction/elimination algorithm, the transmission
sub-events that contribute to the creation of meaningful reflection events are discernable through
their labels, e.g., Dt is the transmitted direct wave. With Figure 2 as a guide, the sub-event
contribution scheme entailed by T (ω)T ∗(ω) is visible. All events with the same difference-in-order
are combined, and these contribute to the construction of the reflection event at that difference-
in-order. For instance, all multiples that differ by one order contribute to the construction of the
first order data event, the reflected primary. The constructed primary has a “path” equivalent to
that not shared by the two sub-event multiples. A similar commentary is made by Schuster et al.
(2004) in the development of their interferometry equations. Remarks follow.

1. Reverberations, or multiples, in the transmitted wave field are critical to the construction
of every important event in the output reflected wave field, including the primaries (see the
contributions to the primary in equation 4).

214



A subevent interpretation of Claerbout’s equations of daylight imaging MOSRP05

2. The full construction of each event, including the primary, requires an infinite series. The
series for the primary, for instance, involves the product of all reverberation pairs whose order
differs by unity (e.g., M (2) and M (3)).

5 Discussion and conclusions

In the transmission-to-reflection mapping, no series is computed. However, the construction of any
reflected event requires an infinite series nonetheless, a series that is discernable through a sub-event
interpretation. The most compelling of these is the construction of the single primary. The (non-
normalized) amplitude of the primary is an infinite series, the summation of all orders of transmitted
event combined with the next lower order. It is curious to think that the full construction of any
primary, even those occurring at early times in the reflection response, requires in principle the
processing and influence of the n’th and n−1’th transmitted multiple, events that both could occur
at very late times in the data record. In other words, a sub-event interpretation demonstrates that
there is – in principle – a time-aperture issue in the use of the transmission to reflection mapping.
In general, also, all primaries are constructed through a retention and manipulation of transmitted
multiples; Claerbout’s equations are in a very real way an example of the prediction of primaries
from multiples, a subject of current research that was accorded a session unto itself at the 2005
SEG meeting.

Figure 1: Configuration for a reflection experiment over a single layer; two interfaces associated with
impedance contrasts, a free-surface and a contrast in wavespeed from c1 to c2, are illustrated. All
contributing propagation has been constrained to the c1 medium. The source and receiver are col-
located on the free-surface, and a downward-propagating normally incident wave field (the offset in
the event diagrams is a convenience) results in a single primary followed by an infinite, diminishing,
series of reverberations that are the 1D equivalent of surface-related multiples.
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Figure 2: Configuration for a transmission experiment through a single layer; two interfaces associated with
impedance contrasts, a free-surface and a contrast in wavespeed from c1 to c2, are illustrated. All
contributing propagation has been constrained to the c1 medium.
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Using the inverse scattering series to predict the wavefield at depth and the
transmitted wavefield without an assumption about the phase of the measured
reflection data or back-propagation in the overburden

A. B. Weglein, B. G. Nita, K. A. Innanen, E. Otnes, S. A. Shaw, F. Liu, H. Zhang, A. C.
Ramı́rez, J. Zhang, G. L. Pavlis, and C. Fan

Abstract

The inverse scattering series is the starting point for the derivation of a new set of approaches
for predicting both the wavefield at depth in an unknown medium, and transmission data, from
measured reflection data. We present a selection of these maps that differ in order (i.e., linear
or non-linear), capability, and data requirements, which have their roots in the consideration
of a data format known as the T-matrix, and which show to have direct applicability to the
data construction techniques motivating this special issue. Of particular note, one of these, a
construction of the wavefield at any depth (including the transmitted wavefield), order-by-order
in the measured reflected wavefield, has an unusual set of capabilities (e.g., it does not involve
an assumption regarding the minimum phase nature of the data, and is accomplished with
processing in the simple reference medium only) and requirements (e.g., a suite of frequencies
from surface data are required to compute a single frequency of the wavefield at depth when the
subsurface is unknown). An alternate reflection-to-transmission data mapping, which does not
require a knowledge of the wavelet, and in which the component of the unknown medium that is
linear in the reflection data is used as a proxy for the component of the unknown medium that
is linear in the transmission data, is also derivable from the inverse scattering series framework.

1 Introduction

There are many fields of non-destructive investigation, of which both exploration seismology and
deep earth investigation are prime examples, whose aim in broad terms is to make inferences
about the interior of an object from external measurements. Within the spheres of these two
examples very different requirements on the type, extent and completeness of surface measurements
may be encountered. These surface measurement requirements for determining target properties
depend upon many factors, including: (1) the assumed ability (or inability) to estimate propagation
properties in the medium that is above and/or surrounding a target, (2) whether or not that target
overburden can be well-approximated (e.g., for the purpose of estimating the wavefield at depth)
by a medium that supports only one-way or two-way propagation, (3) the level of ambition in
“identification” of a target, e.g., whether the goal is a structure map of interfaces in their correct
spatial location, excluding or including evanescent components, or the more ambitious estimation
of earth property changes across those interfaces, and (4) whether or not the algorithm used for
target location and identification requires or does not require information about medium properties
between the target at depth and surface measurements.

The extent and completeness of recorded surface data is often determined by economic and/or
natural acquisition constraints. An example of a natural constraint in whole earth investigation is
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that the sources are, typically, only located at great depth (i.e., earthquake sources), whereas the
receivers are on the surface. In exploration seismology, sources are man-made, and, along with all
receivers, are located on or near the earth’s surface; in this case natural constraints disallow sources
or receivers to be placed at great depth, and economic constraints disallow arbitrarily finely-spaced
and widely-ranging source/receiver positions on the surface.

There are several types of data construction activities, pursued in the seismology of exploration
and production, that can assist in overcoming some of these constraints. Amongst them, (1)
extrapolation and interpolation of surface reflection data, (2) mapping from reflection experiment
data to transmission experiment data and vice-versa, and (3) mapping surface data to data at depth,
the latter of which is an essential ingredient in wave-theoretic migration and migration-inversion
algorithms. Taking a surface experiment and inferring another type of surface experiment (e.g.,
reflection-to-transmission or transmission-to-reflection) has several additional, specific motivations,
including (1) allowing the direct use of mature subsurface determination methods that are not
available for the measured data but that are available for the predicted data type, (2) increasing
surface coverage for methods that require and/or benefit from both reflection and transmission
data, (3) increasing the illumination of targets, and (4) allowing evanescent wave prediction in a
stable and reliable manner.

The diminishment, in recent years, of the apparent separation between whole-earth and exploration
seismology, given the differing experimental configurations and objectives of transmission- and
reflection-type experiments (see, e.g., the AGU 2004 Session “Oil at the Core-Mantle Boundary?
Bridging the Gap Between Exploration and Global Seismology” chaired by R. Snieder and S.
A. Levin), has been influenced by data construction advancements, with the introduction of the
daylight imaging method for a 1D medium by Claerbout (1968) and its later generalization to 3D
acoustic or elastic media by Wapenaar (2003) and Wapenaar et al (2004). The method, based
on reciprocity principles (see, e.g., Fokkema and Van den Berg, 1993; de Hoop and de Hoop,
2000), describes a way to relate reflection and transmission data, and, under certain conditions,
to construct one from another. In essence, the method consists of crosscorrelating passive traces
from two surface receivers, to create the reflection seismogram that would be computed at one
of the locations if there was a source at the other. Claerbout’s idea has since been rediscovered,
extended and applied to numerous areas of interest, among them helioseismology (Duval et al.,
1993; Rickett and Claerbout, 1999), ocean acoustics (Roux et al., 2004), ultrasonics (Larose et al.,
2004; Malcolm et al., 2004; Weaver and Lobkis, 2004) and seismology (Snieder et al., 2002; Snieder,
2004; Wapenaar, 2004; Shapiro and Campillo, 2004; Shapiro et al., 2005; Sabra et al., 2005).

Building reflection data from transmission recordings and vice versa provides two kinds of benefit:
first, as mentioned, a transmission experiment can be translated into a reflection experiment (and
vice versa) and hence apply, to the problem at hand, a set of methods which is normally specific
to the other geometry. Second, having both types of data (data from measurements and data
from construction) allows the development/application of more complex methods for imaging and
inversion which would require both. The relation between transmission and reflection seismograms
is useful, for example, for seismic imaging of the Earth’s interior, using passive recordings of noise
sources located in the subsurface. Among the most notable extensions of the daylight imaging
principle we mention the method of interferometric imaging (Schuster, 2001; Schuster et al., 2004)
which broadens the previous concept to any number or distribution of sources and to arbitrary
reflectivity distributions. Moreover, the method offers means to migrate free-surface and internal
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multiples in the data together with the primaries (see, e.g., Sheng, 2001; Schuster et al., 2004),
migrate transmitted waves and locate unknown sources in the subsurface from ambient noise or
earthquakes recordings. Alternate descriptions include crosscorrelation migration (Schuster, 1999;
Schuster and Rickett, 2000) or an extended form of auto-correlation migration (Schuster et al.,
1997).

There are, furthermore, specific examples in which the ability to relate reflection and transmission
data allows methods developed for one type of geometry to be applied to another problem. In a
recent project sponsored by the National Science Foundation (NSF), a group from the University of
Houston led by A.B. Weglein, together with a group from Indiana University led by G. Pavlis, has
undertaken the task of translating some of the seismic exploration inverse scattering series methods
and algorithms to the deep earth seismology problem. The first product of this collaboration was a
method for separating the forward- and the back-scattered wavefields from earthquake recordings
(Fan et al., 2006) which produced encouraging results on field data (Fan et al., 2005). A further
notable method inspired by the daylight imaging principles with application to seismic exploration
is the “virtual source method” (Bakulin and Calvert, 2004).

There is another and more recently understood benefit to predicting transmission data from re-
flection data. The inverse scattering series currently provides a comprehensive multidimensional
direct inversion method that allows inverse objectives, e.g., free-surface and internal multiple re-
moval, and depth structure maps and non-linear direct AVO to proceed, all without knowing or
ever determining the actual properties that govern wave propagation in the subsurface. Those
inverse tasks are achieved sequentially with distinct algorithms corresponding to task-specific sub-
series. In addition to being independent of any actual subsurface medium properties governing
wave propagation, the free surface and internal multiple attenuation algorithms are independent of
whether the earth is acoustic, elastic, heterogeneous, anisotropic or inelastic (see, e.g., Weglein et
al., 2003); in other words, they are independent of model-type. Recently, a task specific subseries
aimed at performing imaging, i.e., locating reflectors in space, has been identified and tested on
analytic data for simple 1D-earth examples with encouraging results (see Weglein et al., 2001; Shaw
and Weglein, 2003; Innanen, 2003; Shaw et al., 2004; Shaw, 2005). Liu et al. (2005a; 2005b) have
very recently shown the first multidimensional acoustic examples of these methods for determining
the correct spatial location of reflectors without knowing or determining the overburden velocity
model. As the analysis of Weglein et al. (2000), with respect to the possibility and requirements for
a model-type independent imaging algorithm, and the diagrams of Shaw et al. (2004), describing
scattering interactions within the imaging subseries, show, a model-type independent algorithm
would require both reflection and transmission data.

Reflection-to-transmission transformations (of importance, then, to the fundamental capability and
concepts of velocity independent depth imaging) are, when task-separated imaging methods are
not being considered, themselves provided by distinct methods derived from the inverse scattering
series. By way of introducing this potential framework for data construction, the development of
which being the central theme of this paper, we next highlight some relevant aspects of the daylight
imaging data construction method.

The relation between the two data types is derived from reciprocity theorems of the correlation
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type written for one-way wavefields (see, e.g., Wapenaar and Grimbergen 1996, Wapenaar, 2004)

∫

zM=const.

d2x
{
(P+

A )∗P+
B − (P−

A )∗P−
B

}
=

∫

zm=const.

d2x
{
(P+

A )∗P+
B − (P−

A )∗P−
B

}
, (1)

where P+ and P− are flux-normalized down-going and up-going wavefields, respectively. The
derivation of equation 1 assumes that the medium is lossless and that evanescent components can
be neglected and hence this equation can be viewed as an approximation rather than an exact
relation.

The two states A and B can be chosen in different ways to derive relations between reflection and
transmission responses (for a comprehensive description see Wapenaar et al. (2004)). Choosing
both states A and B to represent experiments with the source located at depth zm − ε in a ho-
mogeneous half space (see Figure 1), leads to a relationship which allows the construction of the
transmission response from reflection data. Let the space coordinates of the sources be denoted
by xA and xB. The inhomogeneity V (x, y, z) is located between depths zm and zM and the space
beyond zM + ε is assumed homogeneous. A receiver located at the same depth as the source with
coordinates x would record the reflection response R(x,xA, ω) while a receiver located deeper than
zM would record the transmission response T (x,xA, ω). To obtain a relationship between the re-
flection and transmission responses R and T , the one-way reciprocity theorem of the correlation
type, equation 1, is employed. With states A and B defined as above, we have the following. At
depth zm,

P+
A,B(x,xA,B, ω) = δ(x− xA,B)δ(y − yA,B)sA,B(ω), (2)

P−
A,B(x,xA,B, ω) = R(x,xA,B, ω)sA,B(ω), (3)

where s represents the source signature. At depth zM ,

P+
A,B(x,xA,B, ω) = T (x,xA,B, ω)sA,B(ω), (4)

P−
A,B(x,xA,B, ω) = 0. (5)

Substituting these into equation 1 and dividing by s∗A(ω)sB(ω) we find

∫

zM

d2x T ∗(x,xA, ω)T (x,xB, ω) +

∫

zm

d2xR∗(x,xA, ω)R(x,xB, ω) = δ(xB − xA). (6)

A similar equation can be written for the elastic case (see Wapenaar et al. (2004)). This relation
provides amplitude information about the transmission response from recorded reflection data and
vice versa. However, all the phase information is lost in this process and there is no unique way to
recover it from this relation alone. Reconstructing the phase from the amplitude for a signal would
require additional information which is sometimes provided by the minimum phase condition. For
1D acoustic media, Herman (1992) and Wapenaar and Herrmann (1993) describe the procedure
of constructing the transmission response from reflection data. The procedure implicitly uses the
fact that the transmission response for this type of medium is minimum phase, and hence its
full phase can be reconstructed from amplitude information only. This property of the recorded
wavefield depends on the medium that the wave propagates through; in general it is not satisfied.
In other words, even when the source wavelet used in a seismic experiment is minimum phase,
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the interaction with complex subsurface structures results in a non-minimum phase signal being
recorded on the measurement surface. Different descriptions of minimum phase signals in the time
and frequency domains, as well as properties of minimum phase media and reflection coefficients,
have been collected by Nita and Weglein (2005). Bostock (2004) points out some of the cases in
which the wavefield preserves the minimum phase property, namely for pre-critical intra-modal
free surface reverberations and transmitted P-waves in weak to moderate contrast stratification
with small horizontal wavenumbers. However, for general acoustic and elastic media and wavefield
propagation with arbitrary horizontal wavenumber, the recorded signal will have a mixed phase
character.

In this paper we present a new approach for obtaining data at depth from measured reflection
data based on the inverse scattering series, that is fundamentally different from the daylight imag-
ing approach. Our objective, having provided a brief overview of the current thinking behind
reflection-to-transmission data prediction, is to present new, embryonic ideas concerning potential
contributions of the inverse scattering series to the problem of constructing data that were not
acquired from data that were acquired, and predicting the data both beneath and within the target
medium. This involves two different approaches and extensions of previous ideas, one, a linear
reflection-to-transmission map drawing from Stolt (2002), and the other, a construction of the
wavefield at depth without the velocity model, drawing from Weglein et al. (2001). The exposition
is somewhat involved, and so we include a table of symbols (Table 1) for reference.

The inverse scattering series, and hence this second approach, operates entirely in terms of a
chosen reference medium, usually water in the marine case, and involves data operations adequate
to image only through this reference medium. The former linear extrapolation and interpolation
method derives from an exact linear relationship within the inverse scattering series, and equally
accommodates primaries and multiples without requiring a velocity model for either type of event.
The non-linear inverse-scattering wavefield at depth is obtained, in principle, as though an accurate,
actual, complex velocity was known and a currently leading-edge linear migration technique was
used, with neither the velocity nor the extra boundary measurements required for a discontinuous
subsurface as with a conventional two-way wave migration. However, the cost in the inverse series
depth imaging approach is that a suite of frequencies from the surface data is required to downward
continue a single temporal frequency of the wavefield when the medium is unknown∗.

An inverse scattering series framework for constructing the wavefield at depth
and the transmission response from reflection data

In this section we describe the opportunity provided by the inverse scattering series for constructing,
from reflection data, the actual wavefield at all depths, including the transmitted wavefield. The

∗When the medium is known, one temporal frequency of surface data determines the same temporal frequency of
the wavefield at depth (all current methods for constructing the wavefield at depth fall into this category, and can be
viewed as following from Green’s theorem, i.e., they are linear in the surface data). When the medium is unknown,
the inverse scattering series prescribes a non-linear combination of surface data at a suite of frequencies to predict
one given frequency of the wavefield at depth. These concepts and insights are the direct extension of lessons learned
about temporal frequency requirements and linear/non-linear processes in the removal of free-surface and internal
multiples (see, e.g., the Tutorial for chapters 4 and 5 in Weglein and Dragoset (2005)).
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latter is achievable without requiring or determining the Earth material properties needed by
linear Green’s theorem based approaches. Early thinking on this approach for determining the
wavefield at depth from the inverse scattering series was first described by Weglein et al. (2000).
To describe this procedure we first introduce a data format known in the literature of scattering
theory (e.g., Goldberger and Watson, 1964; Taylor, 1972) as the T-matrix, and the experiment
that motivated that definition. We then describe the generalization of that experiment-motivated
T-matrix definition and how that generalized T-matrix played a role in early inverse scattering
series papers of Moses (1956), Razavy (1975), and Weglein et al. (1981). The relationship between
seismic recorded data and a T-matrix format was presented by Weglein et al. (1981) and Stolt
and Jacobs (1981). The challenge within the inverse scattering series that the presence of the full
generalized T-matrix represented is then described and how those papers addressed that issue. In
addressing that requirement for the complete T-matrix resides the kernel of a wavefield-at-depth
concept and methodology. In fact, we show that satisfying the full off-shell T-matrix requirement,
order-by-order in the measured data, as described by the classic inverse scattering series papers
of Moses and Razavy cited above is equivalent to constructing the actual scattered, and total,
wavefields at depth. This method will be available for marine applications involving acoustic,
elastic and inelastic media, requiring only knowledge of the source signature in the water as input.

1.1 Background

Scattering theory is a form of perturbation analysis, in which a perturbation in the properties of
a medium is related to a perturbation in a wavefield that experiences that medium. The original,
unperturbed medium is typically labeled as the reference medium. The difference between the
actual and reference media is characterized by the perturbation operator, and the corresponding
difference between the actual and reference wavefields is called the scattered wavefield. Forward
scattering takes as input the reference medium, the reference wavefield, and the perturbation
operator, and outputs the actual wavefield. Inverse scattering takes as input the reference medium,
the reference wavefield and values of the actual field on the measurement surface and outputs
the difference between actual and reference medium properties through the perturbation operator.
Inverse scattering theory methods typically assume the support of the perturbation to be on one
side of the measurement surface. In seismic application, this condition translates to a requirement
that the difference between actual and reference media be non-zero only below the source-receiver
surface. Conversely, in seismic applications, inverse scattering methods require that the reference
medium agrees with the actual at and above the measurement surface.

For the marine seismic application, the sources and receivers are located within the water column
and the simplest reference medium (that satisfies the above stated conditions) is a half-space
of water bounded by a free surface at the air-water interface. Since scattering theory relates
the difference between actual and reference wavefields to the difference between their medium
properties, it is reasonable that the mathematical description begin with the differential equations
governing wave propagation in these media. Let

LG = −δ(r− rs), (7)

and
L0G0 = −δ(r− rs), (8)

223



Inverse series construction of transmission data MOSRP05

where L, L0 and G, G0 are the actual and reference differential operators and Green’s functions,
respectively, for a single temporal frequency, ω, δ(r − rs) is the Dirac delta function, and r and
rs are the field point and source location, respectively. Equations 7 and 8 assume that the actual
source and receiver signatures have been deconvolved. The quantities G and G0 are the matrix
elements of the Green’s operators, G and G0, in the spatial coordinates and the temporal frequency
domain; G and G0 themselves satisfy LG = − � and L0G0 = − � , where � is the unit operator. A
further set of operators based on differences between these quantities are considered next:

V ≡ L− L0, (9)

and
Ψs ≡ G−G0; (10)

V is referred to as the perturbation operator and Ψs is the scattered field operator. The Lippmann-
Schwinger equation is the fundamental equation of scattering theory, an operator identity that
relates Ψs, G0, V and G (Taylor, 1972):

Ψs = G−G0 = G0VG . (11)

When the right-hand members of equations 7 and 8 include a wavelet, we re-express equation 11
as

Ps = S(ω)Ψs = P−P0 = G0VP, (12)

where P0, P are the reference and actual wave operators respectively, and G0 is the causal reference
Green’s operator.

In the coordinate representation, equation 12, alternatively called the Scattering equation, is valid
for all positions of r and rs whether or not they are inside the support of V. Examples of L, L0,
and V (when P corresponds to a pressure field) in an inhomogeneous, variable velocity constant
density medium, are:

L = ∇2 +
ω2

c2(r)
,

L0 = ∇2 +
ω2

c20
,

V = L− L0 = −k2α(r),

(13)

where k = ω/c0 and α = 1− c20
c2

. For this model, equation 12 becomes, explicitly,

P (r, rs, ω) = P0(r, rs, ω)−
∫
G0(r, r

′, ω)k2α(r′)P (r′, rs, ω)dr′

= P0(r, rs, ω)−
∫

eik|r−r′|

4π|r− r′|k
2α(r′)P (r′, rs, ω)dr′.

(14)

We next proceed, using the above form as a starting point, to review and develop upon some of
the key quantities used in the scattering description and formulation.
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1.2 The T-matrix and the seismic wavefield

Let us consider the special case where a single frequency plane wave,

eik·r

(2π)3/2
, (15)

is incident upon a localized target, α(r), in which the support of α is within a sphere of radius
R, and k = |k|k̂ = ω/c0k̂. Consider measuring the wavefield at a position r in the far-field well
beyond the support of α. For that experiment, the scattering equation becomes

P (r,k) =
eik·r

(2π)3/2
− eik|r|

4π|r|

∫
e−ikr̂·r′k2α(r′)P (r′,k)dr′, (16)

where we have substituted the far-field form of the Green’s function:

eik|r−r′|

4π|r− r′| ≈
1

4π

eik|r|

|r| e
−ikr̂·r′ , (17)

in propagating from the scattering point r′ to the field point r; r̂ is the unit vector in the direction
of r. In the far-field, Ps, from equation 12 (with k′ ≡ kr̂), becomes

Ps(r,k) ≈ − e
ik|r|

4π|r|

∫
e−ik′·r′k2α(r′)P (r′,k)dr′. (18)

This is an anisotropic spherical wave with an amplitude of

∫
e−ik′·r′k2α(r′)P (r′,k)dr′, (19)

that depends on α(r), the incident wave vector k, and a vector, k′, of the same magnitude, pointing
in the direction of the observation point r. The message of equation 18 is that in the far-field the
scattered wave is a spherical wave with an angle-dependent amplitude that captures the properties
of the actual (in general) extended target α(r).

The above observation motivates the definition of what is referred to as the T-matrix (‘T’ for
transition; see, e.g., Taylor, 1972), a quantity relating the strength of the far-field scattered wave,
in direction r̂ = k′/|k| to the wave vector k:

T (k,k′) ≡ k2

∫
e−ik′·r′

(2π)3/2
α(r′)P (r′,k)dr′. (20)

In the experiment we use to motivate this definition, k and k′ have the same magnitude ω/c0. For
the purposes of inverse scattering theory it is useful to generalize the T-matrix definition to

T (p,p′) ≡
∫

e−ip′·r′

(2π)3/2
k2α(r′)P (r′,p)dr′, (21)

where p and p′ are two arbitrary vectors, unrelated to k in either magnitude or direction.
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The data format represented by equation 20 is the standard found in the papers by Moses (1956) and
Razavy (1975). It can, for instance, be interpreted for k′ = k and k′ = −k as the forward scattering
amplitude and backscattering amplitude, respectively. The relationship between T-matrix incident
plane wave, far-field measurements (equation 20) and reflection seismic data was first described by
Weglein et al. (1981) and further analyzed and developed by Stolt and Jacobs (1981). In three
dimensions, we have

ei(qgzg+qszs)T (k′;k)

qgqs
= ei(qgzg+qszs)

T (kgx, kgy,−qg; ksx , ksy , qs)

qgqs
= φ̃s(kgx , kgy , zg; ksx , ksy , zs;ω),

(22)
where kgx , kgy and ksx , ksy are the Fourier conjugates to xg, yg and xs, ys, the depth wavenumbers
qg and qs are

qg = sgn(ω)

[(
ω

c0

)2

− k2
gx
− k2

gy

]1/2

,

qs = sgn(ω)

[(
ω

c0

)2

− k2
sx
− k2

sy

]1/2

,

(23)

and zg, zs are, as earlier, the depths of the receiver and source respectively. φ̃s is the seismic
scattered (reflection) data due to a point source and measured at a point receiver. Beyond this,
Weglein et al. (2003) have shown that the T-matrix expression T (p,k), where k = ω/c0k̂ =
(ksx , ksy , qs) and p is an arbitrary three-dimensional vector unrelated to k, can also be related

to the seismic exploration experiment. For arbitrary p, the 3D relationship between φ̃(p,k) and
T (p,k) is

φ̃s(px, py, pz; ksx , ksy , qs) = φ̃s(p; ksx , ksy , qs) =
T (p,k)

k2 − p2 − iε

(
1

qs

)
, (24)

where p is the 3D Fourier conjugate of the wavefield observation vector r = (x, y, z), which is
not confined to the measurement surface z = zg; further, the magnitude of p is unrelated to the
magnitude or direction of k. The interpretation that follows from equation 24 is that T (p,k) with
k = ω/c0k̂ and p arbitrary is equivalent to knowing the scattered field at all spatial locations (i.e.,
all x, y and all depths z) for a suite of single frequency experiments, at frequency ω, with sources
located at (xs, ys, zs). The variable p is the 3D conjugate of (x, y, z) in all 3D space, and k comes
from a Fourier transform over single-frequency point sources on the surface. The inverse scattering
series solution for α(r) is described in equations 20–22 of Weglein et al. (1981); further, the reader
may wish to examine equations 32–40 of Weglein et al. (2003) for further discussion on what we
next review.

To generate the inverse scattering series for the constant density variable velocity acoustic case, we
first define the Fourier transform of α(r) as

W (k) ≡
∫
e2ik·r′ α(r′)

(2π)3/2
dr′. (25)

To determine W (k) for all k is to determine the inverse solution for α(r). Equation 21 of Weglein
et al. (1981) then relates W (k) to the T-matrix quantities as

W (k) =−
(

2

π

)1/2 b(k)

k2
+ k2

∫
T ∗(k,q)T (−k,q)

{
H(k)

q2 − k2 − iε +
H(−k)

q2 − k2 + iε

}
dq, (26)
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where

b(k) =
k2T (−k,k)
(

2
π

)1/2
= φ̃s(−ksx ,−ksy ,−qs; ksx , ksy , qs)q

2
ge

−iqs(zs+zg), (27)

and where k2T ≡ T and H(k) is the Heaviside step function. Note that the second term on the
right-hand side of equation 26 requires T (k,q) for all q for a given k = ω/c0k̂, k = (ksx , ksy , qs),
where q is an arbitrary 3D vector per its whole space integration,

∫
dq.

Hence, the inverse scattering series solution in the Fourier domain can be interpreted as requiring the
scattered field (and, hence, the entire wavefield) at all points in space, not only on the measurement
surface. Included in that requirement on the right-hand side of equation 26 is T (q,k) when q = k,
or rather T (k,k). The latter is the transmitted component of the scattered field.

Weglein et al. (2003) review the procedure first developed by Moses (1956) to address this “wavefield
everywhere” requirement. The inverse scattering series produces all quantities associated with an
unknown subsurface as a series order-by-order in the measured surface reflection data. The scattered
(or total) wavefield at depth is no exception. In fact, the wavefield at depth is explicitly calculated,
order-by-order, at each step within the calculation of W (k), the Fourier transform of α(r),

W (k) = W1(k) +W2(k) +W3(k) + ..., (28)

and hence, through the inverse Fourier transform of W , the calculation of α(r). The relevant
equation for wavefield construction is

T (p,k) = T1(p,k) + T2(p,k) + T3(p,k) + ..., (29)

where T (p,k) is
T (px, py, pz; kxs , kys , qs).

Weglein et al. (2000) demonstrate that the first order approximation to T (p,k), i.e., T1(p,k), or
φ̃s, at all depths requires all frequency components contained within the surface data to predict
one frequency of φ̃s at all depths. Hence the inverse scattering series allows one frequency of the
wavefield at all depths in the Earth to be predicted as a series, order-by-order in the surface data,
using all the frequency information therein. We describe this prediction in detail in the following
section. That prediction of the scattered field at depth does not involve a back-propagation within
the medium at depth; if the medium at depth is known, then one frequency on the surface predicts
the scattered wavefield at depth at that frequency. This is a direct analog of the inverse scattering
internal multiple attenuator (Weglein et al., 1997) where, absent of any subsurface information, a
suite of frequencies of surface data are required to predict one frequency of the output.

The latter “one frequency in one frequency out” wavefield prediction, when the medium is known,
derives from Green’s theorem with Dirichlet, Neumann or Robin boundary conditions and is the
theory underlying all current migration theory. The inverse scattering series predicts the wavefield
at depth, including the transmitted wavefield, without knowing the medium, but all frequencies in
the measured wavefield are required to produce a series solution for the wavefield at depth for any
given frequency. The source signature in the reference medium is a pre-requisite for this and all such
inverse methods. These concepts can be applied to all models that allow a perturbative expression.
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Among the models accommodated are acoustic, elastic, and inelastic media. However, it appears
that the specific detail of the wavefield construction will depend on the assumed model type.
Transmission data can mitigate that model-type dependence for a wavefield at depth construction,
whose purpose is to determine an accurate structural map.

2 Order-by-order computation of the wavefield at depth

The inverse scattering series, considered from the standpoint of the T-matrix, constructs the wave-
field everywhere in the unknown medium, order-by-order in the scattered wavefield measured out-
side of that medium.

The wavefield at depth theory, as discussed by Weglein et al. (2000), is based on a constant density
acoustic model of wave propagation. When the predicted wavefield is combined with a causality-
based, small time imaging condition, its output is a reflectivity function map. Such an output
quantity would correspond to an angle-dependent reflection coefficient, or scattering operator, for
a specular or non-specular target, respectively (see, e.g., Weglein and Stolt, 1999). The act of
locating the reflectors would be driven by an acoustic approximation, but the goal would be that
the output nevertheless corresponds to the imaged wavefield associated with a more general, elastic
or inelastic Earth.

The approach begins with the linear component of the inverse scattering series, in which D =
G0V1G0, and explicitly solves for V1 from the data for a given earth model-type. For a constant
density, variable velocity, acoustic model, the perturbation V can be written as in equation 13,
as V = −k2α(x, y, z) where k = ω/c0, c0 is the constant reference velocity, and α(x, y, z) is the
variation of the index of refraction. The linear relationship becomes

α1(pgx − psx , pgy − psy ,−qg − qs) =
4qgqs
−k2

ψs(pgx , pgy , zg, psx , psy , zs;ω), (30)

where ψs(pgx , pgy , zg, psx , psy , zs;ω) is the measured scattered field, i.e., the data D, due to a set of
experiments with sources at (xs, ys, zs) and receivers at (xg, yg, zg). The quantities zs, zg are the
constant depth of source and receiver, respectively; pgx , psx , pgy , and psy are the Fourier conjugates
of xg, xs, yg and ys, and the vertical wave numbers are defined by

qg = sgn(ω)

[(
ω

c0

)2

− p2
gx
− p2

gy

]1/2

, and

qs = sgn(ω)

[(
ω

c0

)2

− p2
sx
− p2

sy

]1/2

.

(31)

In contrast with equation 30, the first-order wavefield at depth is

ψ(1)
s (pgx , pgy , pgz , psx , psy , psz ;ω) =

k2α1(pgx − psx , pgy − psy ,−pgz − psz)

(p2
sx

+ p2
sy

+ p2
sz
− k2 − iε)(p2

gx
+ p2

gy
+ p2

gz
− k2 − iε) , (32)

where (psx , psy , psz), (pgx , pgy , pgz) are the conjugate variables to (xs, ys, zs) and (xg, yg, zg), respec-
tively, and ε is a small positive parameter needed to ensure causal Green’s functions. Equation 32
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follows from the Lippmann-Schwinger equation by expanding each of ψs (at depth), V and G in
orders of the surface data (ψs)m = D and then equating terms of equal order in D on both sides
of the equation. The scattered wavefield ψs, in general, for any source and receiver position may
be expressed as

ψs = G0k
2αψ, (33)

and α and ψ are expandable in terms of the data (ψs)m = D:

α = α1 + α2 + α3 + ...

ψ = ψ0 + ψ1 + ψ2 + ψ3 + ...,
(34)

where

ψ0 = G0,

ψ(1)
s = ψ1 = G0k

2α1G0,

ψ(2)
s = ψ2 = G0k

2α2G0 +G0k
2α1(ψ1),

(35)

etc. These equations are valid at all spatial locations, including in the medium, and they form the
basis of the velocity-independent wavefield construction method. We point out that these equations
are not the inverse scattering series equations. The latter are a relationship between the measured
values of the wavefield and an order-by-order construction of α. Equations 35 represent something
entirely different, an order-by-order construction of the wavefield, ψs, at depth. The procedure
starts with α1 determined by (ψs)m, the measured values of ψs, followed by the substitution of

α1 into the expression for ψ
(1)
s . Then α1, α2 and ψ1 are used to construct ψ

(2)
s , the second order

approximation of the wavefield at depth. For sources and receivers at depth,

ψs = ψ(1)
s + ψ(2)

s + · · ·
G = G0 + ψs,

(36)

where ψ
(n)
s (xg, yg, zg, xs, ys, zs;ω) is the portion of the wavefield at depth that is n’th order in the

measured data. Within equation 35 there is the opportunity to include only task-separated portions
of α2 rather than its entirety. The inclusion of only reflector location terms, or imaging terms within
α2 (as in Shaw et al., 2004), might be expected to produce a structurally accurate imaged wavefield,
without computing the complete α2. Whether the complete α2, or a portion thereof, is computed

and input into equation 35 as part of the construction of ψ
(2)
s , this predicted wavefield at depth

(to second order) is never back-propagated through an actual, or updated, medium. All back-
propagation occurs in the original, unchanged, reference medium. On the measurement surface
(throughout this paper, brackets (·)m indicate the quantity · evaluated on a measurement surface),
these terms reduce to

(ψs)m =
(
ψ(1)

s

)
m(

ψ(2)
s

)
m

=
(
ψ(3)

s

)
m

= · · · = 0.
(37)

In detail, the first-order field at depth in terms of the wavefield on the measurement surface is

ψ(1)
s (pgx , pgy , pgz , psx , psy , psz ;ω) =

−4
k2q′gq′s

k2
1

[
ψs(pgx , pgy , q

′
g, psx , psy , q

′
s;ω1)

]
m

(p2
sx

+ p2
sy

+ p2
sz
− k2 − iε)(p2

gx
+ p2

gy
+ p2

gz
− k2 − iε) ,

(38)
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where

k1 =
ω1

c0
,

q′g,s = sgn(ω)

[
ω2

1

c20
− p2

gx,sx
− p2

gy ,sy

]1/2

,

(39)

and
(
ω1

c0

)2

= p2
sx

+ p2
sy

+

[
p2

sx
+ p2

sy
− p2

gx
− p2

gy
− (psz − pgz)

2

2(psz − pgz)

]2

. (40)

The quantity ψ
(1)
s (xg, yg, zg, xs, ys, zs;ω) for any (xs, zs) and (xg, zg), follows by inverse Fourier

transforming equation 38. To find the first order estimate of the wavefield at all depths for a single
frequency, ω, requires sweeping through surface data for all frequencies, ω1, in order to fill the
spectrum of the source and receiver depth variable’s Fourier conjugates, psz and pgz , respectively,
for the left hand side of equation 38. That calculation provides the first order wavefield at depth
without the velocity. The higher order computations of the wavefield at depth without the velocity
follow directly from equations 35.

3 Analysis of a linear reflection-to-transmission mapping

In this section we consider an approximation to the reflection-to-transmission problem motivated
by the order-by-order construction of the transmitted wavefield that is a natural by-product of the
full inverse scattering series. We also consider a “linear-linear” mapping of reflected to transmitted
wavefield data, and comment on its potential level of applicability and accuracy.

The fact that the first equation in the inverse scattering series, D = G0k
2α1G0 (see Weglein et al.,

2003) solves for a factor α1 that treats all events on equal footing (whether they are primaries or
multiples) is a deficit from an inversion point of view, but a definite asset from a data reconstruction
point of view and objective. For the purpose of data reconstruction we suggest that the idea of (1)
seeking to construct a (linear) Earth model, and then (2) using that Earth model to reconstruct
data is overly restrictive. Rather, we view α1 as a more general curve-fitting factor that is flexible
enough to match the variability of the data. Adopting such a view provides a framework for the
extrapolation of both primaries and multiples that does not include as input a knowledge of or
determination of the actual medium velocity, while simultaneously maintaining a relatively simple
linear form.

In this section we discuss and a linear map of reflected-to-transmitted data. We first present a form
of the mapping for a single-parameter 3D acoustic model, then examine it for a 1D normal-incidence
problem and carry out an initial analysis regarding accuracy.

3.1 A 3D single-parameter linear reflection-to-transmission mapping

We demonstrate the framework for a linear reflection-to-transmission mapping with a 3D, single-
parameter scattering model that assumes medium wavespeed fluctuations away from a homogeneous
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fluid reference medium with constant density. Data D(xg, yg, zg|xs, yg, zs;ω), corresponding to
the measurement of a scattered field on a surface defined by fixed zg (receiver depth) and zs

(source depth), and variable lateral receiver and source locations xg, yg and xs, ys (respectively) is
related to the linear component of the single-parameter acoustic scattering potential α(x, y, z) =
1− c20/c2(x, y, z), namely α1(x, y, z), by

D(kgx , kgy , zg|ksx , ksy , zs;ω) =

∫ ∞

−∞
dx′
∫ ∞

−∞
dy′
∫ ∞

−∞
dz′G0(kgx , kgy , zg|x′, y′, z′;ω)

× k2α1(x
′, y′, z′)G0(x

′, y′, z′|ksx , ksy , zs;ω),

(41)

in which the lateral coordinates xg, yg and xs, yg have been Fourier-transformed into their conjugate
domain parameters kgx , kgy and ksx , ksy respectively, and the G0’s are 3D homogeneous acoustic
Green’s functions, given explicitly by

G0(kgx , kgy , zg|x′, y′, z′;ω) = −e
−ikgxx′−ikgy y′

2π

eiqg |zg−z′|

i2qg
,

G0(x
′, y′, z′|ksx , ksy , zs;ω) = −e

iksxx′+iksy y′

2π

eiqs|z′−zs|

i2qs
.

(42)

(The difference in sign on the source and receiver wavenumbers is due to different sign conventions
in the Fourier transform.) We next fix the source location to be at depth z ′ such that z′ > zs for
all α1(x

′, z′) 6= 0, which, in addition to the substitution of equations 42 into 41, leads to

D(kgx , kgy , zg|ksx , ksy , zs;ω) =
1

4π2

∫ ∞

−∞
dx′
∫ ∞

−∞
dy′
∫ ∞

−∞
dz′

[
e−ikgxx′−ikgy y′ eiqg |zg−z′|

i2qg

]

× k2α1(x
′, y′, z′)

[
eiksxx′+iksy y′ eiqs|z′−zs|

i2qs

]

=− k2

16π2qgqs
e−iqszs

∫ ∞

−∞
dz′eiqg |zg−z′|eiqsz′α1(kgx − ksx , kgy − ksy , z

′).

(43)

Data corresponding to a reflection-like geometry (called, say, R) and a transmission-like geometry
(T ) derive from equation 43 simply by further fixing the receiver depths in each case to be, re-
spectively, either smaller than all contributing z′ values (zR

g ), or greater than all contributing z′

values (zT
g ). Such data are then relatable, linearly, to portions of the scattering potential, let us

say αR
1 and αT

1 respectively. The inverse scattering series could be solved for α order-by-order in
either reflection or transmission data. In orders of reflected data α = αR

1 + αR
2 + ..., and in orders

of transmission data α = αT
1 + αT

2 + ...; the first term in each of these two series correspond to

R(kgx , kgy , z
R
g |ksx , ksy , zs;ω) = − k2

16π2qgqs
e−i(qszs+qgzR

g )

∫ ∞

−∞
dz′ei(qg+qs)z′αR

1 (kgx − ksx , kgy − ksy , z
′),

T (kgx , kgy , z
T
g |ksx , ksy , zs;ω) = − k2

16π2qgqs
e−i(qszs−qgzT

g )

∫ ∞

−∞
dz′ei(qs−qg)z′αT

1 (kgx − ksx , kgy − ksy , z
′).

(44)
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Performing the Fourier transforms and solving for αR
1 , we have

αR
1 (kgx − ksx , kgy − ksy ,−qg − qs) = −4qgqs

k2
ei(qszs+qgzR

g )R(kgx , kgy , z
R
g |ksx , ksy , zs;ω),

T (kgx , kgy , z
T
g |ksx , ksy , zs;ω) = − k2

4qgqs
e−i(qszs−qgzT

g )αT
1 (kgx − ksx , kgy − ksy , qg − qs).

(45)

The idea here is to use the reflection-derived linear inverse αR
1 as computed in equation 45 to

estimate the transmitted data, by substitution of αR
1 for αT

1 . It may be of particular interest to
point out that this mapping is only possible in the case of a medium that has 2D or 3D variability.
Notice that the linearized medium-transmitted wavefield relationship in equation 44 involves a
Fourier transform over the depth z, in which the conjugate coordinate is the difference between
source and receiver depth wavenumbers. In a 1D medium these depth wavenumbers are equal, and
as such the integral captures only the DC component of the vertical wavenumber of αT

1 ; in order to
“fill the spectrum” of αT

1 with data information, we require a range of contributing qg − qs values,
which, again, are only present if the medium has lateral variability.

If a source wavelet, S(ω), is included in the physical description, then the P0 and P are multiplied by
S(ω), and G0(x

′, y′, z′, ksx , ksy , zs;ω) in equation 41 is replaced by S(ω)G0(x
′, y′, z′, ksx , ksy , zs;ω)

and equations 45 become

S(kmx , kmy , khx , khy , kz)α
R
1 (kmx , kmy , kz) = AR(kmx , kmy , khx , khy , kz)R(kmx , kmy , khx , khy , kz)

S(kmx , kmy , khx , khy , kz)α
T
1 (kmx , kmy , kz) = AT (kmx , kmy , khx , khy , kz)T (kmx , kmy , khx , khy , kz),

(46)

where

AR = −16π2qgqs
k2

ei(qszs+qgzR
g ), (47)

and

AT = −16π2qgqs
k2

ei(qszs−qgzT
g ), (48)

are expressed as functions of kmx , kmy , khx , khy (the midpoint- and offset-conjugate variables, re-
spectively), and depth wavenumber kz. By simply defining

α′R
1 (kmx , kmy , khx , khy , kz) ≡ S(kmx , kmy , khx , khy , kz)α

R
1 (kmx , kmy , kz) = ARR, (49)

and
α′T

1 (kmx , kmy , khx , khy , kz) ≡ S(kmx , kmy , khx , khy , kz)α
T
1 (kmx , kmy , kz) = ATT, (50)

we generate a new mapping, in which α′R
1 is determined by the reflection data (including its

wavelet), R, and the analytic form AR. Then, α′R
1 is substituted into equation 50 to determine the

transmitted field T including the wavelet. This scheme which only depends on αR
1 (kmx , kmy , kz) =

αT
1 (kmx , kmy , kz) (a conjecture to be fully examined in a future correspondence) does not in any

way require knowledge of the wavelet, let alone its phase character. This wavelet independence is
in contrast with the methods based on reciprocity theorems, as given in the Introduction of this
paper.
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3.2 Analysis of the linear reflection-to-transmission mapping in 1D

We examine the R to T linear map procedure described here for the case of a 1D† normally-
incident acoustic plane wave on a delta-, or spike-like, velocity perturbation in a homogeneous
reference medium. Figure 2 illustrates the 1D model and the two “experimental” configurations
we analyze. With source fixed at the origin, zs = 0, and field position at any depth zg, and the
delta-scatterer of amplitude λ placed at z0, the full non-linear expression for the scattered field in
terms of these elements is

ψs(zg, zs = 0, k) =
kλ
2i e

ik|zg−z0|eikz0

1− kλ
2i

. (51)

This general expression is specified to correspond to data of either reflection- or transmission-type
by setting the receiver at depths shallower or deeper than the scatterer (see Figure 2). These cases
result in

R(zg, k) ≡ ψs(zg < z0, zs = 0, k) =
kλ
2i e

i2kz0e−ikzg

1− kλ
2i

,

T (zg, k) ≡ ψs(zg > z0, zs = 0, k) =
kλ
2i e

ikzg

1− kλ
2i

.

(52)

Given a homogeneous reference medium characterized by wavespeed c0, these data are related to
their respective linear model components αR

1 (z) and αT
1 (z), using

R(zg, k) =

∫ ∞

−∞
G0(zg|z′;ω)k2αR

1 (z′)ψ0(z
′|0; k)dz′,

T (zg, k) =

∫ ∞

−∞
G0(zg|z′;ω)k2αT

1 (z′)ψ0(z
′|0; k)dz′.

(53)

Being sensitive to the relative depths of the source, receiver and integration variable z ′, the re-
flection and transmission configurations lead to quite different expressions; with G0(zg|z′;ω) =
(i2k)−1 exp(ik|zg − z′|) and ψ0(z

′|0; k) = exp(ikz′) we have

2i

k
R(zg, k)e

−ikzg = α̃R
1 (−2k)

2i

k
T (zg, k)e

−ikzg = α̃T
1 (0),

(54)

in which ·̃ signifies that quantity in the conjugate (k) domain. The second equation makes it clear
why we will, from here on, be forced to restrict ourselves to comments on the k = 0 component of
the model. Substituting the analytic data in equations 52 into these formulas for the reflected and
transmitted Born inverse approximations, and considering the reflected case at k = 0, we have

α̃R
1 (0) = λ

α̃T
1 (0) = λ.

(55)

In other words, at the only k value for which comparable results are available for 1D analysis,
k = 0, the component of the model that is linear in the reflected data and the component of the

†This obviously contravenes the requirement for lateral variability that we just mentioned; as a consequence, we
shall only be able to analyze and compare the wavenumber k = 0 component of both linear model estimates.
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model that is linear in the transmitted data are equal. This is an encouraging result, since we want
the linear model component of one configuration to reproduce the data of the other configuration.

The linear method described in this section is based on several assumptions. At the outset is the
assumption that an inverse scattering series solution is available in terms of either reflected or
transmitted data. (By transmitted data we mean the transmitted portion of the scattered field.)
The scattered field, and its transmitted and reflected portions, are all zero when the actual medium
corresponds to the reference medium; also, in 2D and 3D the terms of the inverse scattering series
may be constructed for both reflected and transmitted data. Hence, there is reason to believe that
it is possible to expand the earth property perturbation in terms of either reflected or transmitted
data. We further assume that the linear term in these two expansions are the same, or at least
not too far apart. That is the key assumption in this linear reflection-to-transmission mapping
procedure, and its validity and reasonableness is currently being examined.

If we can establish the validity of this assumption, we may find ourselves with a method of no small
applicability, since there are very few other assumptions or approximations, linear or otherwise, in
the expressions used for αR

1 and αT
1 in equations 44‡. Furthermore, since the reference medium

is homogeneous, and is never altered or updated, all of the “migrations” of the linear inversion
procedure require data only on one side of the closed volume where the wavefield is predicted, i.e.,
either reflected or transmitted data, independent of whether or not the actual medium supports
two-way propagation.

In 1D we have benefited from the ability to consider this linear reflection-to-transmission map
analytically, but as a result of this dimensional restriction we are restricted to the k = 0 portion
of the spectrum of αT

1 . The last example in this section has demonstrated that the assumption
αR

1 = αT
1 is valid at this portion of the spectrum. The ability, encountered in 2D/3D cases, to

actually construct the terms in the series, and fill the spectrum of the first linear estimate, is not
an assurance that all is well with a series solution. However, constructibility supersedes convergence,
stability, etc., as a necessary condition for considering a series approach and therefore we have an
affirmative response to this important first question. We plan to test these ideas with 2D and 3D
examples.

4 Discussion and conclusions

In this section we provide: (1) a perspective on the new approaches for the reflection-to-transmission
mapping problem proposed in this paper; (2) a discussion on how these new approaches relate to the
research program on task-separated subseries of the inverse scattering series, and to the migration-
inversion philosophy and strategy, and (3) a set of open issues that will be addressed and developed,
as part of our plan.

In the section on constructing the wavefield at depth, a general formula for T (p,q), for arbitrary
p, q, and a fixed ω, is presented as a series in orders of the measured reflection data. Constructing
this T (p,q) for all p, q and for a fixed ω is equivalent to computing the scattered wavefield at any

‡These are exact equations relating the data to a specific linear approximate model component, but for our current
purposes they are viewed as solutions for curve-fitting factors αR

1 and αT
1 .
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source and receiver location in the subsurface. (The source and receiver positions are the conjugates
of p, q respectively; all p, q are 2D or 3D vectors depending on the dimension of variation of
the subsurface.) A subset of the formula for T (p,q) at any p, q, namely that computed with (1)
|p| = |q| = |k| and (2) the z components of p and q (i.e., pz and qz) equal to qs and qg respectively, is
a series for the transmitted component of the scattered field. In 2D, for instance, where kgx = kg and
ksx = ks, the transmitted data is T (kg, qg, ks, qs;ω) = T1(kg, qg, ks, qs;ω) +T2(kg, qg, ks, qs;ω) + . . .;
Tn is n’th order in the measured reflection data, which is T (kg,−qg, ks, qs;ω). This is a reflection-
to-transmission data map in orders of the reflection data. In theory, it requires knowledge of the
signature of the source wavelet, but it does not make any assumptions regarding this wavelet, and
is not limited to wavelets or data with particular (minimum) phase properties. The latter, but not
the former, is also a property of linear map method for R-to-T construction we have presented.
Further examination of these ideas as to their practical implementation is under way.

In the recent work on the inverse scattering series for imaging and inverting primaries (Weglein
et al., 2000; Weglein et al., 2001; Weglein et al., 2003; Shaw and Weglein, 2003; Innanen, 2003;
Innanen and Weglein, 2003; Shaw et al., 2004; Shaw, 2005; Zhang and Weglein, 2005; Innanen,
2005; Liu et al., 2005a and 2005b) the location of structure is determined by following the action
of the inverse series in taking data towards earth material property maps. The individual acoustic,
elastic or anelastic properties are placed at the locations where they each, individually, experience a
rapid variation; the values of the changes in those properties, at those interfaces, are also separately
determined.

In the history of seismic migration and seismic inversion, there was a development (e.g., Stolt
and Weglein, 1985) that took a different route to the location and parameter estimation prob-
lem. Rather than going directly from data to location and magnitude of Earth properties, it was
suggested that there were conceptual and practical advantages to, first, downward continuing and
imaging the wavefield to produce a structural map; second, recognizing that the amplitude of that
imaged quantity is related to the local, angle-dependent reflection coefficient; and third, using that
coefficient to determine changes in local earth material properties. Amongst the advantages of this
two step approach, labeled Migration-Inversion, or migration before inversion, are: (1) the struc-
tural map does not require that one follow all the trials and tribulations of each earth property,
changing its value as it finds its correct spatial location; (2) the location of reflectors may only
depend on the velocity of wave propagation and not require each separate earth property to be
defined; (3) the petroleum industry has a rich, mature and developed experience in locating struc-
ture using wavefield extrapolation and imaging techniques. Behind this philosophy is the view that
location is governed principally by a transmission process that cares about the average velocity and
its slowly varying components, and a reflection process, within the imaged amplitude, that cares
about rapid local changes in earth properties.

Of course, all current migration and migration-inversion algorithms depend upon an adequate
velocity model to determine structure. In this paper, the section on predicting the wavefield at depth
without the velocity model is providing a first embryonic step toward a response to the migration-
inversion strategy for locating structure followed by inversion, when the adequate velocity model
is unavailable. There are many important targets e.g, beneath salt, basalt and karsted sediments
where this lack of adequate velocity model availability is the norm, and without an effective,
currently available solution. Our purpose is to have these research efforts and approaches reported
here contribute towards and advance a practical response.
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We anticipate a strategy and plan as follows: for subsalt plays with often ill-defined or nonexistent
images at the target (with all current leading edge velocity analysis and imaging methods), it is
reasonable to start by setting the goal as the determination of a well-defined accurate depth image,
or structure map, temporarily neglecting the more ambitious earth property and rock and fluid
prediction. For that objective, an imaging theory involving multi-dimensional heterogeneity in
acoustic velocity only, i.e., the inverse scattering imaging subseries for determining the location
of rapid changes governed by an acoustic medium (without requiring an adequate velocity model;
see previous references) would be a good first step in moving towards a sub-salt field data test.
Once the sub-salt target location issue is successfully addressed, the next level of ambition will
arrive, i.e., to use the angle dependent amplitude of the structure map to determine the local
earth mechanical and then rock and fluid properties. At that point, the idea of imaging the
actual wavefield in depth without an adequate velocity model, as progressed in this paper, becomes
relevant. Equations 35 and 38 are direct calculations of the wavefield at depth that nevertheless
could benefit from task specific insights/algorithms (using, e.g., only the imaging terms) to provide
a structural map from an imaged wavefield at depth. In this strategy we concentrate, as a first pass,
on the acoustic location properties of the inverse scattering series, but anticipating that they will
evolve into an imaged wavefield at depth procedure, to be viewed as a new task with its own task
specific subseries. The task-separated stages of inversion will become: (1) removal of free surface
multiples; (2) removal of internal multiples; (3) production of accurate angle dependent reflection
coefficients (i.e., the scattering operator) at depth; and (4) estimation of earth material properties.

The inverse scattering series is a comprehensive theory and inversion methodology for removing
multiples, and imaging and inverting primaries. The theory operates directly in terms of reflection
data and an estimate of medium propagation properties, the latter of which is neither assumed to
be adequate, nor ever changed (e.g., iterated) towards adequacy. Directness means that the theory
provides algorithms that output the specific indicated inverse objective without the use of external
measures of effectiveness, nor centering itself around the minimization of an objective function.
As such, horizontal common image gathers, for instance, or any move-out trajectory or weighted
sums thereof – criteria at the heart of many valuable and worthwhile processing methods – are not
called upon, or required in these direct procedures. The construction of desired inverse quantities,
using task-specific subseries and algorithms derived from the inverse scattering series, are distinct
from methods based on such criteria precisely because of this directness. In this paper, we have
described: (1) how velocity-independent imaging algorithms can benefit from the availability or
prediction of transmission data; (2) how new concepts that originate from the inverse scattering
series can contribute to the satisfaction of that transmission data interest, without the typical need
for phase assumptions on the reflection data; finally and separately, (3) how the wavefield at all
depths can be predicted without a back-propagation in the actual subsurface.
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Symbols

� Unit operator
c, c0 Actual, reference velocity
G, G0 Actual, reference Green’s operator

k = (ω/c0)k̂ Incident wave-vector
k′ = |k|r̂ A wave-vector directed towards observation point r̂

k̂ Unit vector in the direction of k

(xg, yg, zg) Receiver coordinates
(xs, ys, zs) Source coordinates
kgx , kgy Fourier conjugates to xg, yg

ksx , ksy Fourier conjugate to xs, ys

kmx , kmy Midpoint-conjugate variables
khx , khy Offset-conjugate variables
L, L0 Actual, reference differential operator
P, P0 Actual, reference wave operator
p = (px, py, pz) 3D Fourier conjugate to r = (x, y, z)
pgx , psx , pgy , psy Fourier conjugates to xg, xs, yg, ys

pgz , psz Fourier conjugates to zg, zs
P+, P− Flux-normalized down-going, up-going wavefields
qg, qs Depth wave-numbers
R Reflection response
r, r′, rs Field point, scattering point, source point
s,sA,B,sA,sB, S(ω) Source signature
T Transmission response
T(k,k′), T(p,p′) T-matrix, generalized T-matrix
V Perturbation operator
V (x, y, z) Inhomogeneity located between zm and zM
W (k) Fourier transform of α(r)
xA,xB Spatial coordinates of the sources
z0 The location of the delta-scatter
zM , zm Upper, lower limit of inhomogeneity V (x, y, z)
α(r) Velocity perturbation
αR

1 Reflection-derived linear inverse
αT

1 Transmission-derived linear inverse
ω Temporal frequency
Ψs Scattered field operator
ψs, φs Scattered wave fields

ψ
(n)
s n = 1, 2, · · · The portion of the wavefield that is n-th order in the measured data

λ The amplitude of the delta-scatter
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Figure 1: The choice of acoustic states in an experiment without free surface and corresponding up-
going and down-going wavefields.
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Figure 2: Schematic illustration of the 1D delta-scatterer analytic framework. (a) The incident plane
wave ψ0 propagates toward the scatterer λδ(z− z0); (b) the reflection response with zg < z0;
(c) the transmission response with zg > z0.
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Abstract

The inverse scattering series (ISS) is a comprehensive theory for processing primaries and
multiples without the traditional need for an adequate velocity model. Weglein et al. (2003),
Shaw et al. (2003a), and Shaw (2005) describe an application of ISS that achieves accurate
depth of the subsurface reflectors with no prior knowledge of subsurface velocity. However, this
is essentially the 1D activity of a multidimensional theory. The work described in this paper
is geared towards understanding and incorporating the ISS mechanisms that act directly on
2D/3D data to locate reflectors in 2D/3D space. Some of these mechanisms have 1D analogs,
while others do not, in fact, we currently regard the lateral/vertical imaging problem as, loosely,
a series expansion about the vertical problem, whose terms are most analogous to the depth-only
1D algorithms referenced above. In themselves these terms can be demonstrated to provide value
as the basis for imaging algorithms. We do so in this paper, with a numerical application of the
partial capture of 2D imaging terms on two synthetic models. We further present and discuss
a low order term of the 2D-only ISS imaging subseries in terms of its expected activity, and
describe in detail how the large-contrast form of the algorithm used in the numerical examples
is derived from the inverse scattering series.

1 Introduction

The inverse scattering series is a direct, non-linear inverse procedure for the reconstruction of an
unknown spatial distribution of multidimensional medium parameters in terms of only measure-
ments of a reflected wave field. The history of its investigation as a tool for the processing and
inversion of seismic data, and the development of the task-separated treatment of the ISS, is de-
tailed by Weglein et al. (2003). The ISS had been cast to individually carry out what are externally
defined to be classical objectives of seismic data processing and inversion: (1) elimination of free
surface multiples, (2) attenuation of internal multiples, (3) location in depth of rapid variations of
medium parameters (imaging), and (4) determination of the parameter changes at those locations
(inversion). The ISS expands the desired output as an infinite series in terms of only the data and
a chosen (often very simple) reference Green’s function, thus each of the above tasks is additionally
carried out without an accurate input velocity model.

In our current task-specific methods, terms from the inverse series with different purposes are
identified and grouped together to form subseries. In this paper we study the components of the
ISS whose purpose is specifically to obtain the location in depth of reflectors given only the data and
a simple (and highly inaccurate) reference Green’s function as input. For the numerical examples
in this paper, we assume: the availability of the source wavelet, the the removal of ghosts and the
free-surface multiples.
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We work in the simplest framework that allows study of one new aspect of the problem or issue
that is of interest, and has not yet been addressed. Ultimately, these issues (now understood) will
be combined to achieve a processing tool of sufficient realism to be of practical application. In the
research we describe herein, we move from 1D to multi-dimensional subsurface structure - a step
that has a plethora of new issues and challenges to address beyond what is faced in a 1D medium.
In this paper, we consider the idealized problem of non-linear, ISS-based imaging (Weglein et al.
(2000); Shaw et al. (2003a)) in a constant-density acoustic medium, as described for the 1D pre-
stack case by Shaw (2005), with the added complexity of lateral variability in the unknown medium
parameter.

In this paper, we begin with a brief review of the ISS, followed by a discussion of a form of the linear
inverse, given a line source in a homogeneous reference medium. The patterns of the imaging terms
of the ISS are investigated; several second-order terms deemed to be responsible for 2D reflector
location tasks are presented and described (see equation (7) and (8)).

The 2D imaging subseries is next discussed as a cascaded infinite series containing (1) leading order
and portions of higher-order imaging contributions amounting to laterally varying 1D prestack
forms, and (2) further ISS terms that have no 1D analogy. These latter terms only address issues
that relate to 2D phenomena, e.g., lateral variations and diffractions. On the salt model tested
here that term may be seen to initiate action to accomplish some combination of intrinsically 2D
tasks (e.g., lateral shift, diffraction processing) without knowing the velocity model.

We illustrate with numerical examples, in particular carried out on the salt model, within a kh = 0
setting (kh is the offset-conjugate wavenumber; see Clayton and Stolt (1981) for more detailed
definition) using a formula incorporating components (1) in the previous paragraph (i.e., in which
a correction similar to the 1D normal incident case is performed at each lateral location). These
include both leading and higher-order imaging subseries terms, the latter of which we show become
quite pronounced for large contrast velocity models. We demonstrate the use of these 2D forms on
two input models. The numerical tests of the higher-order imaging algorithm on data from these
models is encouraging.

Appendix A provides a new understanding of the current task-isolated higher-order imaging series
in relation to other high-order ISS primary processing mechanisms. Appendix B describes the
ongoing development a more general framework for direct multidimensional imaging, i.e., in which
kh 6= 0.

2 Background

In operator form, the differential equations describing wave propagation in an actual and a reference
medium can be written as

LG = −I L0G0 = −I (1)

where L, L0 and G, G0 are the actual and reference differential and Green’s operators, respectively,
for a single temporal frequency (ω) and I is the identity operator. The perturbation V is defined
as V = L0 − L. The Lippmann-Schwinger equation, G = G0 + G0V G, may be expanded to form
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the forward scattering series:

G−G0 = G0V G0 +G0V G0V G0 + · · · . (2)

As detailed by Weglein et al. (2003), the representation of V = V1 + V2 + V3 + · · · in equation (2)
as an infinite series in orders of the measured scattered wave field G − G0, gives rise to the ISS
when like orders are equated:

D = G−G0 = G0V1G0

0 = −G0V2G0 −G0V1G0V1G0

0 = −G0V3G0 −G0V1G0V2G0 −G0V2G0V1G0

−G0V1G0V1G0V1G0
...

(3)

etc. For a constant density acoustic reference medium characterized by wavespeed c0, the rela-
tionship between the perturbation and the velocity is: c20V/ω

2 = α(z), where α(z) = 1− c20/c2(z).
Through the use of a variety of changes of integration variable and instances of integration by parts,
Shaw (2005) identifies a portion of the ISS sum α = α1 + α2 + α3 + · · · that acts only to alter the
locations of the discontinuities of the linear inverse α1 from the wrong depth to the correct depth.
First we consider the leading-order imaging subseries and its closed-form (c.f. Shaw et al. (2003a)):

αIM (z) =
∞∑

n=0

(−1/2)n

n! α
(n)
1 (z)

(
z∫
0

α1(z
′)dz′

)n

= α1

(
z − 1

2

z∫
0

α1(z
′)dz′

) (4)

The terms in the series above were exposed and isolated after integration by parts. They have two
characteristics: (1) a derivative of the linear inverse with respect to the coordinate in which the
reflector location is being corrected, (2) weighted by a depth integral of the same linear inverse.
We proceed with a study of related forms in the more complex 2D case.

2.1 Equations for multidimensional imaging

Equation (3) can be solved for 2D constant density acoustic media, in which the single perturbation
parameter,

α(x, z) = 1− c20/c2(x, z), (5)

is the essential quantity. In the ISS representation our objective is solved for as an infinite series,
α(x, z) = α1(x, z) +α2(x, z) + α3(x, z) + · · · . The first term (linear inverse) is expressible in terms
of the data via the solution of the first equation in (3) as Clayton and Stolt (1981):

˜̃α1(km, kz) = − 4k2
z

k2
z + k2

m

˜̃
D

{
km,

c0kz

2

√
1 +

k2
m

k2
z

}
, (6)

in the midpoint conjugate (km) and depth conjugate (kz) domains with the restriction kh = 0 (for

a more general framework, see Appendix B); the quantity
˜̃
D as it appears is computed from wave
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field information on the measurement surface:

˜̃
D {km, ω} =

∞∫

−∞

dxm

∞∫

−∞

dt

∞∫

−∞

dxhe
i(ωt−kmxm)D

{
xm +

xh

2
, xm −

xh

2
, t
}

where the data in the integrand are considered in the source and receiver coordinates: D(xg, xs, t).
With this computation, in lateral and depth coordinates, of the linear inverse, we turn to the non-
linear terms of the ISS, and express them as operations on α1(x, z) in analogy to the 1D case, we
also apply the integration-by-parts strategy to extract terms with the imaging-like aspect visible
in equation (4). Solving the second equation in (3) for α2(x, z), and manipulating the results
accordingly, produces, amongst other terms (Liu et al. (2005b)):

α1(x, z) = −1

2

∂α1(x, z)

∂z

z∫

0

α1(x, z
′)dz′, and (7)

α1(x, z) = −1

2

∂α1(x, z)

∂x

z∫

0

z′∫

0

∂α1(x, z
′′)

∂x
dz′. (8)

These two terms bear resemblance to the imaging terms in Shaw et al. (2003a). Equation (7) is
an exact reproduction of the 1D depth imaging mechanism, involving a first derivative of α1 with
respect to depth weighted by the integral of α1 down to that depth. The term in equation (8),
meanwhile (with no analogous 1D term), has the expected hallmarks of a lateral corrector at
second order, involving a first derivative with respect to the lateral coordinate, weighted by the
depth integral of the rate of change of α1. Notice that this term will vanish if the linear inverse
does not vary laterally. We surmise that this term is the first in an infinite series correcting the
lateral error in the linear inverse.

The above analysis leads to two main conclusions. First, the presence, in the multi-D case, of
an exact reproduction of the 1D depth imaging engine, as terms that are zeroth order in ∂α1/∂x
(and the tendency of the imaging terms of the ISS to behave like nested, or cascaded Taylors
series), suggests that we consider the vertical and lateral imaging problem as being akin to a series
expansion about the purely vertical imaging problem. Lateral corrector terms that are of low
order should be effective when applied to problems involving slow lateral variability; rapid lateral
variations will evidently require terms of higher-order in ∂α1/∂x. Second, this re-appearance of the
same patterns as those found in the 1D case allow for the same summations to closed-form that
exists in 1D scenarios. Hence, the zeroth order lateral corrector, and a portion of leading order
depth corrector expression for the 2D case is (c.f. equation (4)):

αLOIS(x, z) = α1


x, z − 1

2

z∫

0

α1(x, z
′)dz′


 . (9)

We refer to the quantity above as “leading-order imaging subseries” (LOIS) to conform with descrip-
tions of the 1D imaging algorithm. Leading order refers to the fact that the subseries coefficients
are approximated as the integral of the first power of α1 only (Shaw, 2005). Similarly, then, to the
imaging mechanism of Shaw’s analysis, equation (9) can achieve accurate depth imaging for media
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of low- to moderate-velocity contrast. It is a depth corrector that involves the same engine as in
the 1D case, but with a different quantity under scrutiny at each x.

We have had occasion to study idealized Earth models whose constrast levels have been of a size too
large for the leading order mechanisms alone to be used; this has led to some effort at incorporation
of high-order ISS reflector location terms, as part of a new partial higher-order imaging without
inversion formula. The introduction to this Annual Report describes the development, context and
motivation that lead Liu to this form; further, in Appendix A we show how a primitive result in
this effort, that amounts to a 1D higher-order imaging and inversion algorithm, can lead to this
form in that limited 1D environment, if a Jacobian is set to one. Liu has taken it through the large
generalizing leap to the 2D case, and additionally generated an imaging without inversion formula,
which, as a task-isolated form, is our objective. The imaging form is

αHOIS


x, z +

1

2

z∫

0

α1(x, z
′)

1− 0.25α1(x, z′)


 = α1(x, z); (10)

By comparing this expression to the leading order form, the effect of the higher order terms, (an
alteration in the integrand), which will become significant for larger contrast media, are noticeable.
We hereafter refer to this task-separated direct imaging formula as HOIS.

We next explore this new formula as applied to a set of acoustic models.

2.2 Numerical examples

Figure 1: The geometry and velocity distribution of geological model-1.

We present two examples of the “low lateral order” 2D imaging algorithms of eqns (6) and (10).
Fig 1 illustrates model 1 and Fig 2 shows a sample shot record from the synthetic data sets acquired
from model 1. The data are created using a fourth-order finite difference scheme, with a temporal
sampling rate of 2ms and a lateral spatial sampling rate of 5m. The source signature is the
first derivative of a Gaussian (peak frequency of 28Hz). The resultant data are used as described
above to compute the linear inverse associated with a homogeneous reference medium of wavespeed
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Figure 2: A sample finite-difference synthetic shot gather acquired from model-1.

Figure 3: Model 1 linear imaging results α1, here only the water-bottom is correctly imaged by the water-speed.

c0 = 1500m/s. First, the linear term α1 (Figure 3) is calculated from data according to equation
(6), then the higher-order imaging subseries (Figure 4) is calculated via equation (10). In Figures 3
and 4 the colored lines are the benchmarks indicating the correct locations of three reflectors.
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Figure 4: Model-1 higher-order imaging subseries, here all reflectors were correctly imaged by an unchanged
constant water-speed.

Figure 5 shows the second model, obviously the lateral variation is greatly increased, and the
contrast is also increased that the highest velocity is more than three times that of the reference
velocity. The same finite-difference modeling algorithm is used to generate the shot gathers (see
Figure 6). The the linear inverse in equation (6) is calculated with a whole space constant velocity
c0 = 1500(m/s) and is shown in Figure 7. Its partial derivative with respect to depth is also taken
and displayed in Figure 8.

The part of α2 which is responsible for imaging, i.e., the term in equation (7), was shown in Figure 9.
Even for this complicated geological model, its basic features remain the same: (1) where the water
bottom is located, this term does not act. This makes sense as the water bottom has already
been correctly imaged by water speed. The inverse series does not act when it is not necessary,
a very important feature of purposeful perturbation. (2) Below the water bottom, this term is
strong where there are reflectors in the linear image. The reflectors below the water bottom have
activated this term, and will be moved.

After α1 is calculated, the higher-order imaging subseries (see Figure 10) can be calculated; we
note that the same unchanged reference velocity is used in every step.

The current higher-order imaging subseries, although very effective in moving reflectors to their
actual locations, captured only the part of the imaging capability within ISS most pronounced for
vertical variations. Other terms, for example, equation (8), which has no 1D analogy, will deal with
imaging problems associated with fast lateral variations (for example, diffractions). This terms is
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Figure 5: The geometry and velocity of each layer in model-2.

Figure 6: Left: shot gather with xs = −2000(m). Right: shot gather with xs = 2000(m). In both shot gathers,
conflicting hyperbolas are present which will cause ambiguities in velocity analysis.

calculated and shown in Figure 12.
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Figure 7: Model 2 linear imaging results.

Figure 8: The partial derivative of the linear term over depth
`

∂α1

∂z

´

(the purpose of this partial derivative is
to make the reflectors clearer in the section). The red lines are benchmarks indicating the actual
geology. In the linear image, only the water bottom was correctly imaged by the whole-space water
velocity. All other reflectors are in wrong locations. Diffractions below the water bottom was not
collapsed because only the water velocity is used to do the migration. The bow-tie at the tip of the
salt bottom was not properly untied because the inaccuracy of the reference velocity. The bottom
reflector was more that 1km away from its correct locations.

3 Conclusions

We present an extension of the velocity-independent imaging methods of the ISS to accommodate
media that vary laterally as well as in depth. In spite of the added complexity of the ISS terms,
the use of an integration-by-parts operation produces classes of terms that either generalize and
become the laterally variable depth corrective terms of the 1D normal incidence case, or have the
hallmarks of being part of a totally new laterally corrective mechanism. Both classes of terms call for
specific and reasonably straightforward non-linear data activity, that we demonstrate encouraging
numerical examples on 2D synthetic data. Ongoing research is geared towards finding and grouping
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Figure 9: The part of α2 which is responsible for seismic imaging.

Figure 10: Higher-order imaging subseries calculated using a constant, unchanged reference velocity (to make
the reflectors clearer, the partial derivative over z is taken). The actual locations of the reflectors
are indicated by red lines. The water bottom was not touched since it had already being correctly
imaged by the water velocity. The second reflector (including the top salt) was correctly imaged.
The third reflector (including the salt bottom was imaged very close to their actual locations.
Outside the salt flank, the locations of the fourth reflector was also very close to its actual locations.

terms which is more specific for large lateral variations, and studying the structure of the algorithm
in a more general framework than restricting kh = 0.
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Figure 11: Higher-order imaging subseries calculated using a constant, unchanged reference velocity (again,
to make the reflectors clearer, the partial derivative over z is taken). A dashed polygon (in orange)
was overlayed around the portion of the fifth reflector below the salt. The spatial location of the
fifth reflector was much improved over the linear image: very close to its actual location on the
right side of the salt, still visible below the salt, but the spatial error is larger in the left half of the
model.)

Figure 12: The part of α2 calculated by equation (??). This term vanishes for models with no lateral variation,
and is very weak for the models with small lateral variation, but becomes pronounced for this model
with large lateral variation. It is particularly strong where there is un-collapsed diffraction energy
in the linear image. This low-order term alone is likely the starting point of a series meant to
handle uniquely 2D phenomena.
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Appendix A: new understanding of the intuitive leap made last year

In Liu et al. (2005b), the intuitive higher-order imaging subseries is provided without solid deriva-
tions. One big difference between this higher-order form and the leading-order imaging subseries
(see Shaw et al., 2003a) is that, the moving term is applied to the left-hand-side of the equation
rather than the right-hand-side. In this section, we indicate how this change is triggered by the
inverse scattering series.

This section offers a demonstration of the equivalence between the intuitive higher-order imaging
series (see Liu et al., 2005b, Liu et al., 2005a) and the reflector location behavior of a high order
series coupling the imaging and inversion activity.

The closed-form of the the leading order imaging subseries (see Shaw et al. (2003b)) is

αLOIS(z) = α1


z − 1

2

z∫

−∞

α1(u)du


 . (11)

For a medium with small to moderate contrasts, the leading-order imaging subseries can achieve
accurate depth imaging using a constant, unchanged reference velocity. As mentioned in Shaw
(2005), it omits terms which will become significant for medium with large velocity contrast. To
improve the imaging capabilities of the leading-order imaging subseries, two changes were arrived
at. One of them arose from a consideration of the combined imaging and inversion capability of
the ISS Innanen (2005), which we will refer to as

αSII(z) =

∞∫

−∞

eikz




∞∫

−∞

exp
(
−ik

[
z′ + Z(z′)

])
α1(z

′)dz′


 dk, (12)

and in which Z(z′) is defined as:

Z(z′) =
1

2

z′∫

−∞

α1(z
′′)

1− 0.25α1(z′′)
dz′′. (13)

The other is the higher-order imaging subseries in Liu et al. (2005b), Liu et al. (2005a) (ignoring
the x-dependency):

αHOIS


z +

1

2

z∫

−∞

α1(u)

1− 0.25α1(u)
du


 = α1(z). (14)

Equation (14) was reached by the observation that, the leading-order imaging subseries has the
possibility of using the information below the reflector itself to decide the amount of moving. This is
a violation the view that in the ISS an event only communicates with the events above it to decide
how it should be moved. How can we avoid this behavior? A solution is to shift the non-linear
operation to the other side of the equation with the sign reversed:

αSLOIS


z +

1

2

z∫

−∞

α1(u)du


 = α1 (z) (15)
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If the velocity contrast is very small, equation (15) is very close to equation (11), so the accuracy
of the leading-order imaging subseries for small contrast is kept. Furthermore, this step forces the
moving algorithm to rely solely on information from depths shallower than that being moved.

The high-order imaging and inversion subseries was proposed in Innanen (2005) in such a way that
a geometric series in the data was incorporated under the integrand. This series, which was shown
to be consistent to third order with all orders of moving term, was furthermore summed such that
inside this integrand series could be expressed in closed-form. The integrand in fact changed from
α1 to α1

1−0.25α1
. In Liu et al. (2005b), this modified moving term is plugged into equation (15)

to have equation (14). The advantage of equation (14) is that, while the higher-order imaging
capability is introduced, the task-separated nature of the series remained: the amplitude of α1 was
not modified. In Liu et al. (2005b), its effectiveness in moving all the reflectors to their actual
locations with a constant, unchanged reference velocity is demonstrated. Here the equivalence of
equation (12) and the intuitive equation (14) was provided as follows:

If the order of integration is changed, equation (12) becomes:

αSII(z) =

∞∫

−∞

eikz




∞∫

−∞

exp
(
−ik

[
z′ + Z(z′)

])
α1(z

′)dz′


 dk

=

∞∫

−∞

dz′α1(z
′)

∞∫

−∞

dk exp
(
−ik

[
z′ + Z(z′)− z

])
dz′dk

Noticing that the innermost integral in the equation above results in a δ-function, we have,

αSII(z) = 2π

∞∫

−∞

dz′α1(z
′)δ
(
z′ + Z(z′)− z

)

For simplicity, let’s define a function,

f(z′) = z′ + Z(z′). (16)

With the definition above, αSII(z) can be further expressed as,

αSII(z) = 2π

∞∫

−∞

dz′α1(z
′)δ
(
f(z′)− z

)

The expression above can be simplified by changing the integration variable from z ′ to u = f(z′),
and since z′ = f−1(u), the expression above becomes,

αSII(z) = 2π

∞∫

−∞

df−1(u)α1(f
−1(u))δ (u− z)

αSII(z) = 2π

∞∫

−∞

δ (u− z)α1(f
−1(u))

∂f−1(u)

∂u
du

αSII(z) = α1(f
−1(z)) ∗ 2π

∂f−1(z)

∂z
.
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If we ignore the Jacobian term 2π ∂f−1(z)
∂z , which affects the amplitude but not the location of the

reflectors, we obtain,

αSII(z) = α1(f
−1(z)).

Obviously, the equation above is equivalent to,

αSII(f(z)) = α1(z).

Plug in the definition of f in equation (16), we have,

αSII(z + Z(z)) = α1(z).

Substituting in the definition of Z(z) in equation (13), the expression above become,

αSII


z +

1

2

z∫

−∞

α1(u)

1− 0.25α1(u)
du


 = α1(z). (17)

The expression above is identical to equation (14).

Appendix B: derivation of α1 in a more general framework

Here we provides a more general framework (than kh = 0) for inverse scattering series in the
presence of lateral variation.

Let’s consider a simplified seismic experiment in 2D where the elevation of the sources zs and
receivers zg are fixed (see Figure 13). In this case, the seismic data should be considered as a
function of three variables: the horizontal coordinates of the sources (xs), the horizontal coordinates
of the receivers (xg), and time (t).

Figure 13: A model with sources and receivers located at the same depth level: zg = zs. Free-surface is
not considered because we assume the pre-processing had already eliminated its effects (ghosts and
free-surface multiples).

In many formalisms for seismic imaging, a certain model (often much simplified) is assumed for the
derivation of the algorithm. For example, in the most popular constant-density acoustic model,
only the velocity is assumed to be varying. If velocity is the only objective, the earth has only two
degrees of freedoms: the horizontal coordinate x and the vertical coordinate z. Obviously there is
one more freedom in the data than the objective function. The extra freedom must be reduced to
reach an answer. In section (2.3), we discuss the differences between different reduction methods.
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The wave-equation in seismic exploration can be expressed as

LG = −I, (18)

where L is the differential operator associated with the actual medium velocity (c), G is the Green’s
function (or impulse response) for the actual medium. I is the identity operator. In ISS, we first
solve another problem:

L0G0 = −I, (19)

where L0 and G0 are the differential operator and Green’s function associated with the reference
medium (usually a medium much simpler than the actual one), respectively.

The potential V is defined as the difference between the reference and actual differential operator
V = L0−L. If velocity is the only varying parameter, V can be expressed as V = (ω/c0)

2α, where

ω is the temporary frequency and α is defined as α(x, z) = 1− c20(x,z)
c2(x,z)

.

Equation (18) and (19) can be combined to have the Lippmann-Schwinger equation (Weglein et al.,
2003):

GV G0 = G−G0 (20)

In the left-hand-side of equation (20), both G and V are unknown, the right-hand-side is known
only on the measurement surface where data is available. ISS is a perturbative solution to equation
(20) by first solving:

G0V1G0 = G−G0. (21)

Then the later terms are iteratively solved by setting terms with order higher than 1 to be zero
(Weglein et al., 2003):

0 = G0V2G0 +G0V1G0V1G0

0 = G0V3G0 +G0V1G0V2G0 +G0V2G0V1G0 +G0V1G0V1G0V1G0
...

(22)

For constant density acoustic model, the relationship between the data and the objective function
α1 can be expressed as (Clayton and Stolt, 1981, Liu et al., 2005b):

˜̃α1(kg − ks, qg + qs) = −4
qgqs
ω2/c20

˜̃
D (kg, ks, ω) (23)

where ˜̃α1 is the double Fourier transform of α1(x, z):

˜̃α1(km, kz) =

∞∫

−∞

dxe−ikmx

∞∫

−∞

dzeikzzα1(x, z)

and qg = sgn(ω)
√

(ω/c0)2 − k2
g , qs = sgn(ω)

√
(ω/c0)2 − k2

s .
˜̃̃
D is triple Fourier transform of the

data D(xg, xs, t):

˜̃̃
D (kg, ks, ω) =

∞∫

−∞

dxge
ikgxg

∞∫

−∞

dxse
−iksxs

∞∫

−∞

dteiωtD(xg, xs, t)
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Let’s summarize all the variables and their corresponding Fourier conjugates in the table below:

Physical meaning Variable name Fourier conjugate

x-coordinate of the receiver xg kg

x-coordinate of the source xs ks

Time t ω

x-coordinate of the mid-point xm = 0.5(xg + xs) km = kg − ks

Offset xh = xg − xs kh = kg + ks

By a simple transformation of coordinates, the data can be transformed to the mid-point xm and
offset xh:

xm =
xg + xs

2
xh = xg − xs (24)

˜̃α1(km, kz) = −4
qgqs
ω2/c20

˜̃
D (km, kh, kz) (25)

It’s clear that there is one more freedom in data than the objective function. In Liu et al. (2005b),
the extra degree of freedom is fixed by choosing the offset conjugate kh to be zero.

The extra freedom in the data had been studied by Zhang and Weglein (2004), by fixing ratio
between ω and qg = qs,

qg = qs =
ω

c0
cos(θ), where : θ = constant,

kg = ks.
(26)

Similar treatment can be found from the first equation in P161 by Shaw and Weglein (2004). The
objective of this article is to generalize the works mentioned above to allow both lateral variations
in the medium and extra freedom in the data. This extra freedom is crucial for studying other
parameters (e.g. density variations).

To generalize equation (26), we define a fixed angle θ without restricting kg = ks:

kg + ks = 2
ω

c0
sin (θ) . (27)

And Liu et al. (2005b) can be considered as the special case of θ = 0. With this data choice, the
relationship in equation (14) of Liu et al. (2005b) can be generalized as:

kh = kg + ks = 2 ω
c0

sin (θ) kg − ks = km (28)

We will solve equation (23) under the constraint of equation (28). Equivalently speaking, for each
km and ω, the corresponding vertical wave-number kz can be calculated by:

kz = qg + qs = sgn(ω)

√(
ω

c0

)2

−
(
ω

c0
sin (θ) +

km

2

)2

+ sgn(ω)

√(
ω

c0

)2

−
(
ω

c0
sin (θ)− km

2

)2

.

For fixed km and θ, let’s consider the equation above as a function of ω:

kz = sgn(ω)

√(
ω

c0

)2

−
(
ω

c0
sin (θ) +

km

2

)2

+ sgn(ω)

√(
ω

c0

)2

−
(
ω

c0
sin (θ)− km

2

)2

= κ(ω).

(29)
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For the same fixed km and θ, we can invert the relation above to express ω as a function of kz:

ω = κ−1(kz) =
c0kz

2

√
k2

z + k2
m

k2
z cos2(θ)− k2

m sin2(θ)
(30)

With ω being defined in equation (30), our generalized formalism can be expressed as :

˜̃α1 (km, kz) = − 4qgqs
ω2/c20

˜̃̃
D

(
ω sin(θ)

c0
+
km

2
,
ω sin(θ)

c0
− km

2
, ω

)

=− 4qgqs
ω2/c20

∞∫

−∞

dxge
−ikgxg

∞∫

−∞

dxse
iksxs

∞∫

−∞

dteiωtD (xg, xs, t)

(31)

Let’s change the integration variable (xm = 0.5(xg + xs), xh = xg − xs) :

= − 4qgqs
ω2/c20

∞∫

−∞

dxm

∞∫

−∞

dxhe
−ikg [xm+0.5xh]eiks[xm−0.5xh]

∞∫

−∞

dteiωtD (xm + 0.5xh, xm − 0.5xh, t)

= − 4qgqs
ω2/c20

∞∫

−∞

dxme
−i(kg−ks)xm

∞∫

−∞

dxhe
−i(kg+ks)xh/2

∞∫

−∞

dteiωtD (xm + 0.5xh, xm − 0.5xh, t)

= − 4qgqs
ω2/c20

∞∫

−∞

dxme
−ikmxm

∞∫

−∞

dxhe
−i

ω sin(θ)
c0

xh

∞∫

−∞

dteiωtD (xm + 0.5xh, xm − 0.5xh, t)

= − 4qgqs
ω2/c20

∞∫

−∞

dxme
−ikmxm

∞∫

−∞

dt

∞∫

−∞

dxhe
iω
h
t−

sin(θ)xh
c0

i

D (xm + 0.5xh, xm − 0.5xh, t)

With another change of the integration variable (τ = t− sin(θ)xh

c0
), we have :

= − 4qgqs
ω2/c20

∞∫

−∞

dxme
−ikmxm

∞∫

−∞

eiωτdτ

∞∫

−∞

dxhD

(
xm + 0.5xh, xm − 0.5xh, τ +

sin(θ)xh

c0

)

= − 4qgqs
ω2/c20

∞∫

−∞

dxme
−ikmxm

∞∫

−∞

dτeiωτDτp (xm, τ)

where Dτp is simply the Radon transform of all traces within a CMP gather:

Dτp (xm, t) =

∞∫

−∞

dxhD

(
xm +

xh

2
, xm −

xh

2
, t+ xh

sin (θ)

c0

)
(32)

We have the expression for α1 :

˜̃α1 (km, kz) = − 4qgqs
ω2/c20

∞∫

−∞

dxme
−ikmxm

∞∫

−∞

dτeiωτDτp (xm, τ) (33)
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Please notice that Dτp (xm, τ), the last expression in the equation above, is the slant-stacking or
Radon transform of the data in the data in the CMP-gather. The advantage of expressing data
in this form is that it offers: (1) an easier cut of the direct-arrivals, and (2), very straightforward
control over the amplitude and waveform.

There must be many other pre-processing procedures which can be much easily done in the tau−p
domain (the data after slant stacking) than in the original domain. And the computation cost can
be greatly reduced since the freedom of the data is reduced.

Issues of missing spectrum

In (33), the frequency ω is calculated as in equation (30). Only in the special case of θ = 0, we can
sweep the data in the (kg, ks, ω) domain to achieve a complete spectrum of α1 for −∞ ≤ km ≤ ∞,
and −∞ ≤ kz ≤ ∞. Otherwise, for km 6= 0, there is always a missing band in the spectrum.

If we require that both qg and qs are real, we have:

∣∣∣∣
ω

c0

∣∣∣∣ ≥
∣∣∣∣
ω sin(θ)

c0
± km

2

∣∣∣∣

Let’s consider an easy case where ω ≥ 0 is positive, we require:




ω
c0
≥ ±

(
ω sin(θ)

c0
+ km

2

)
=⇒ ω ≥ ±0.5kmc0

1∓sin(θ)

ω
c0
≥ ±

(
ω sin(θ)

c0
− km

2

)
=⇒ ω ≥ ∓0.5kmc0

1∓sin(θ)


 =⇒ ω ≥ |0.5km| c0

1− |sin (θ)| = max

(∓0.5kmc0
1∓ sin(θ)

,
±0.5kmc0
1∓ sin(θ)

)

Likewise, for ω < 0, we have:


 −

ω
c0
≥ ±

(
ω sin(θ)

c0
+ km

2

)
=⇒ ω ≤ ±0.5kmc0

−1∓sin(θ)

− ω
c0
≥ ±

(
ω sin(θ)

c0
− km

2

)
=⇒ ω ≤ ∓0.5kmc0

−1∓sin(θ)


 =⇒ ω ≤ − |0.5km| c0

1− |sin (θ)| = min

( ∓0.5kmc0
−1∓ sin(θ)

,
±0.5kmc0
−1∓ sin(θ)

)

Combining the 2 relations above, we have:

|ω| ≥ 1

2

|km| c0
1− |sin (θ)|

Let’s denote the lower limit above as: ωmin

ωmin =
1

2

|km| c0
1− |sin (θ)|
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We then consider when the lower-limit ωmin is reached, what would be the corresponding kz:

(
ω sin (θ)

c0
± km

2

)2

=

(
0.5 |km| c0
1− |sin (θ)|

sin (θ)

c0
± km

2

)2

=
k2

m

4

(
sin (θ)

1− |sin (θ)| ± 1

)2

=
k2

m

4

(
sin (θ)∓ |sin (θ)| ± 1

1− |sin (θ)|

)2

=




k2
m
4

(
1

1−|sin(θ)|

)2
=

ω2
min

c20
k2

m
4

(
1−2|sin(θ)|
1−|sin(θ)|

)2
=

ω2
min

c20
(1− 2 |sin(θ)|)2




kz = qg + qs =

√
ω2

c20
−
(
ω sin (θ)

c0
+
km

2

)2

+

√
ω2

c20
−
(
ω sin (θ)

c0
− km

2

)2

=
ωmin

c0

√
1− {1− 2 |sin(θ)|}2 = 2

ωmin

c0

√
|sin(θ)| −

∣∣sin2(θ)
∣∣ = |km|

√
| sin(θ)|

1− | sin(θ)|

min(|kz|) = |km|
√
| sin(θ)|

1− | sin(θ)| (34)

From equation (34), it’s clear that the lower-limit for kz is proportional to km. The missing part
of the spectrum is displayed in the shaded region of figure 14.

Figure 14: In the (km, kz)-plane, the spectrum is missing for the 2 shaded triangular regions.

The slope of the shaded regions in the figure above is
√

|sin(θ)|
1−|sin(θ)| , it will be zero if θ = 0. This

means that for the special case of θ = 0, the shaded region is empty and the spectrum is complete.

Issues of removing direct arrival

In inverse scattering series, the direct arrival (G0) is usually assumed to be removed from the
recorded data. Let’s study this issue by a sample shot gather in Figure 16: for large offset, the
reflection data tend to mingle with or arrive earlier than the direct arrival. The shot gather
was generated by finite-difference modeling algorithm with acquisition and geological information
displayed in Figure 15. The phenomena above imply that a straightforward cut of the direct wave
will hurt the primaries. Ideally, the direct wave can be surgically removed by wavelet estimation
followed by de-ghosting. The procedure discussed here claimed no superiority to them. The point
we want to make, is that, a simple reasoning in physics, can give us a surprisingly good result
compared with straightforward cut.
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Figure 15: A sample single-interface geological model with no lateral variation.

Figure 16: A sample shot gather showing reflection data mingle direct arrivals for large offset.

The difficulty of straightforward mute of the direct arrivals comes from the fact that the sources in
the exploration seismology are very similar to point sources, which usually generate head waves. If
the incident waves are plane waves, then we don’t need to worry about head waves and make the
cut feasible.

The procedure we discussed is the following: (1) Synthesize plane-wave experiment by slant-stack
(see Figure 17). (2) Cut the direct arrivals after slant-stack. In this example, a cut from 0.2(s) will
be an easy choice.

Figure 17: The result of summing all the traces together (slant-stack with p = 0)in Figure 16 together. The
only one reflection arrives at 0.4(s). Only very little amount of the direct arrival is visible in this
example since the starting time for the seismogram is 0.09(s). It’s clear that the direct arrival and
reflections are well separated using a threshold t = 0.2(s).
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A note on inverse scattering series based closed-forms applied to imaging

Jingfeng Zhang, Fang Liu, Kristopher Innanen, Simon Shaw and Arthur B. Weglein

Abstract

This is a detailed explanation of the intuitive leap that Liu et al. (2004) performed on the
higher ordering imaging series (HOIS), except in this note the main target is the leading order
imaging series (LOIS). It is shown that an altered form of the LOIS is more reasonable. For
small contrast model, the difference between the outputs of the original and altered forms is
almost negligible.

1 Introduction

The inverse scattering series (ISS) has been successfully employed over a full spectrum of seismic
processing tasks. One such task is seismic depth imaging with a reference medium velocity which
locates the Earth’s reflectors. The first step of this task is to obtain α1(z) which is the Stolt
migration result using reference medium velocity. Secondly, more terms of the inverse scattering
series are identified to improve the locations of the reflectors in α1, without changing their ampli-
tude/properties. To date, two closed forms of the imaging sub-series have been identified and are
known in the literature as the leading order imaging series (LOIS) and the higher order imaging
series (HOIS) (Shaw et al., 2003; Liu et al., 2004). In this note, through analysis of those closed
forms and the work of Innanen (2005), we argue that a slightly altered form of the LOIS is more
preferable.

2 Closed forms of the leading and higher order imaging series

The LOIS and HOIS closed forms are

αLOIS(z) = α1

(
z − 1

2

∫ z

0
α1(z

′)dz′
)

(1)

and

αHOIS
(
z +

1

2

∫ z

0

α1(z
′)

1− 1
4α1(z′)

dz′
)

= α1(z). (2)

The functions αLOIS(z) and αHOIS(z) provide better reflector locations compared to α1. One may
notice that in Eq.1, the argument of αLOIS is very simple and that of α1 is relatively complicated,
while in Eq.2, it is αHOIS that has the relative complicated argument. Why this transfer of
complexity? What kind of difference will it make? In this short note, we will try to answer these
questions, without becoming too involved in the math or diagrams of the inverse scattering series.
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3 Interpretation and alteration of the leading order imaging series

There are several ways to interpret Eq.1:

1. The value of αLOIS at z equals to the value of α1 at z − 1
2

∫ z
0 α1(z

′)dz′ = z′b; or,

2. The value of αLOIS at z = z′b + 1
2

∫ z
0 α1(z

′)dz′ equals to the value of α1 at z′b; or reversely,

3. The value of α1 at z′b equals to the value of αLOIS at z = z′b + 1
2

∫ z
0 α1(z

′)dz′.

Imagine that there is an interface at z′b in α1. Then based on the third interpretation, this interface
will be moved to another depth z, and the distance to be moved is determined by: 1

2

∫ z
0 α1(z

′)dz′,
which is an integration to depth z, not z′b. So, if z is bigger than z′b, then α1 values from greater
depths contribute to the moving of this shallower interface. This conclusion is actually a little
strange since our diagram analysis only permit shallower events helping the locations of deeper
events. Even from physical instincts, it seems strange that the moving of shallower events care
about deeper events. What is going on here?

Actually, the higher order form for reflector location was first incorporated as part of a coupled
imaging-inversion algorithm (Innanen, 2005). Through a “natural” isolation operation, the imaging
part of this algorithm would seem to be

αHOIS(z) = α1

(
z − 1

2

∫ z

0

α1(z
′)

1− 1
4α1(z′)

dz′
)
, (3)

which is very similar to Eq.2 except where the complicated argument stays.

Innanen and Liu both tested Eq.3 and found that the results were poor. Then from physical
intuition, Liu et al. (2004) moved the argument to the left hand side and obtained Eq.2 which
provided very good results. To understand this move, let’s apply the same operation to Eq.1:

αSLOIS
(
z +

1

2

∫ z

0
α1(z

′)dz′
)

= α1(z), (4)

where SLOIS denotes “Shifted LOIS”. Let’s analyze its meaning in a similar way:

1. The value of αSLOIS at z + 1
2

∫ z
0 α1(z

′)dz′ equals to the value of α1 at z; or, reversely,

2. The value of α1 at z equals to the value of αSLOIS at z + 1
2

∫ z
0 α1(z

′)dz′; so,

3. The value of α1 at z′b equals to the value of αSLOIS at z′b + 1
2

∫ z′b
0 α1(z

′)dz′.

Clearly, if it happens that there is an interface at z ′b in α1 then it will be moved to depth z and
the distance to move is determined by an integration to depth z ′b. No deeper events will possibly
contribute to the movement of shallower ones. So it seems that Eq.4 might be more reasonable
compared to Eq.1, just like Eq.2 compared to Eq.3.
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4 Conclusions and discussions

We briefly discussed the form of the LOIS and showed that a slightly changed form looks more
reasonable, just like Fang Liu did on HOIS. For small contrast model, the difference between the
outputs of the original and altered forms is almost negligible. Further efforts are needed in order to
derive the more reasonable LOIS and HOIS closed forms, instead of just using physical intuition.
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Approximations to direct non-linear imaging-inversion: a 1D error analysis and
candidate forms for partial 2D/3D imaging

Kristopher A. Innanen

Abstract

This paper continues in the analysis and interpretation of components of the inverse scatter-
ing series, that are deemed to concern tasks of imaging and inversion (coupled and uncoupled).
(1) The coupling subseries of Innanen (2003) and Innanen and Weglein (2003), at leading or-
der, and Innanen (2005), at high order, is reviewed, and an error analysis is provided for a 1D
normal incidence, single layer example. (2) The capture of velocity-independent imaging terms
in multiple dimensions, by Liu et al. (2005), is extended by appealing to a 2D Taylor’s series
analogy. Numerical tests of the latter are presently inconclusive.

1 Introduction and terminology

This paper concerns itself with (1) a review and error analysis of the leading- and high-order
versions of the coupling subseries of the inverse scattering series (Innanen, 2003; Innanen, 2005),
and (2) postulation of a form for direct 2D velocity independent imaging (due to the original inverse
equations formulated by Weglein et al., 2002; Weglein et al., 2003). In this section the mathematics
of the inverse scattering series is briefly reviewed. Thereafter, (1) and (2) above are discussed and
exemplified. Further relevant analysis and a reconciliation between the shift forms of Liu et al.
(2005) is presented in this report by Zhang et al. (2006).

1.1 Terms and definitions

To briefly review the theory of inverse scattering, it is useful to temporarily resort to an operator
notation, whereby, for instance, a “true” wave field satisfies the equation

LG = I, (1)

and a “reference” wave field satisfies
L0G0 = I, (2)

where L and L0 are the true and reference wave operators, and G and G0 are the true and
reference Green’s operators respectively. The operators are general in the sense of model, and fully
3D. Equations (1) and (2) are in the space/temporal frequency domain. The perturbation operator
is given by

V = L0 − L, (3)

the scattered wave field is
Ψs = G−G0, (4)
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and the Lippmann-Schwinger equation is, in this framework:

Ψs = G−G0 = G0VG. (5)

The Born series arises from equation (5) through self-substitution:

Ψs = G0VG0 + G0VG0VG0 + G0VG0VG0VG0 + ...

= (Ψs)1 + (Ψs)2 + (Ψs)3 + ... .
(6)

In other words, the scattered field is represented as a series in increasing order in the scattering
potential. The approach taken here (reviewing the work described completely by Weglein et al.,
2003), is to represent the solution (the perturbation operator) as an infinite series:

V = V1 + V2 + V3 + ..., (7)

where Vj is “j’th order in the data”. This form is substituted into the terms of the Born series,
and terms of like order in Ψs are equated (each term is considered to have been evaluated on the
measurement surface m). This is the form of the inverse scattering series:

(Ψs)m =(G0V1G0)m,

0 =(G0V2G0)m + (G0V1G0V1G0)m,

0 =(G0V3G0)m + (G0V1G0V1G0V1G0)m

+ (G0V1G0V2G0)m + (G0V2G0V1G0)m,

...

(8)

The idea is that V1, the component of V that is linear in the data, is solved for with the first
equation. This result is substituted into the second equation, leaving V2 as the only unknown,
which may then also be solved for. This continues until a sufficient set of Vj are known to accurately
approximate the desired result V.

The form of the operators L, G, L0, G0, and V obviously vary depending on the desired form for
the wave propagation. The simplest possible case is chosen here: a 1D constant density acoustic
medium, with the reference medium homogeneous. The scattering potential is confined to a finite
region on one side of the source and receiver locations. This choice amounts to defining

L =
d2

dz2
+

(
ω

c(z)

)2

,

L0 =
d2

dz2
+

(
ω

c0

)2

,

(9)

in which case

V =

(
ω

c0

)2

−
(

ω

c(z)

)2

= k2α(z), (10)

where k = ω/c0 and α(z) = 1 − c20/c2(z). This simple physical framework also permits the use of
the Green’s function

G0(z|zs; k) =
eik|z−zs|

2ik
(11)
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(which becomes G0 when it is included as part of the kernel of the integrals of the series). In this
framework equation (7) reduces to

k2α(z) = k2α1(z) + k2α2(z) + k2α3(z) + .. . (12)

Finally, following the conventional physical interpretation of the “rightmost” Green’s operator in
every term of equation (8) as being the incident wave field, these are replaced with incident plane-
waves ψ0(z|zs; k). The terms of equation (8) become

ψs(z|zs; k) =

∫ ∞

−∞
G0(z|z′; k)k2α1(z

′)ψ0(z
′|zs; k)dz′,

0 =

∫ ∞

−∞
G0(z|z′; k)k2α2(z

′)ψ0(z
′|zs; k)dz′

+

∫ ∞

−∞
G0(z|z′; k)k2α1(z

′)

×
∫ ∞

−∞
G0(z

′|z′′; k)k2α1(z
′′)ψ0(z

′′|zs; k)dz′′dz′,

...,

(13)

in which αn are solved for order-by-order.

2 Part I: Review and analysis of the coupled imaging-inversion subseries

The identification, manipulation, and isolation of portions (i.e., terms) of the inverse scattering
series that, to some satisfactory level of approximation, operate solely on primaries is an important
issue in algorithm development and analysis. I begin by appealing to the well-known linear inver-
sion, and its “diagrammatical representation”, in Figure 1a. (It is assumed that algorithms derived
from such diagrams will necessarily operate on input data/linear inverse results that are free from
multiples.)

The diagram, which reflects very broadly the geometry of a wave experiment with source and
receiver at the same depth, say z = 0, and scattering interactions below, illustrates the “single-
scattering” nature of the linear inverse. (These diagrams illustrate scattering geometry in the depth
coordinate; the lateral extent of the diagrams are a convenience.) It is a visual representation of
the mathematics in the top line of equation (8): we form a relationship between the measured
wave field and a quantity involving (a) a propagation from the source to an interaction point in the
reference medium, say at some depth z′, via G0, (b) a single scattering interaction of strength V1

at z′, followed by (c) a further propagation from interaction point to the receiver in the reference
medium via G0.

This structure may be interpreted as a framework for interrogation of reflected primary data in the
aid of imaging and inversion. The shape of the diagram indicates that the data are to be searched
for contributions to an Earth model as if each and every model contribution, or discontinuity, was
generated by a single interaction, a point at which a component of the wave field was deemed to
change direction with respect to the preferred axis z.
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All data events will be treated as primaries in this approximation, since no path consistent with a
reverberation, or multiple, exists here, only a downward propagation of z ′, followed by an upward
propagation of z′, a total distance of 2z′ in pseudo-depth. (This is held to be true even though these
terms are not describing real primaries involving propagations, reflections, and transmissions, in the
real medium, but rather, an inverse series analog to these, involving propagation in the reference
medium and interactions of strength V1. Neither of these latter two quantities necessarily relate
immediately to wave events in the actual Earth; rather, they describe a prescribed search and
interrogation of the data as a means to process and invert.) This is a strength of the linear method,
since primaries are generally considered to be the signal in a seismic experiment whereas multiples
are considered noise; an accurate subsurface image is most often generated when primaries only are
present. However, since all propagation occurs in the reference medium, which is in our framework
held to be distinct from the true medium, the locations and amplitudes of reflectors in the single-
scattering image approximation will be incorrect. Hence, this diagram/approximation has definite
and well-understood weaknesses. The role of higher order image-forming and inversion terms in
the series must be to correct these weaknesses – process primaries only, but to the correct depth
and amplitude.

Figure 1b illustrates within this diagrammatical framework the thinking behind the choice of terms
that are deemed to fulfill this role. The proposed rule is: utilize higher order terms in the series
(i.e., terms with more than one scattering event), but use only those whose diagram retains the
underlying form of the linear scattering diagram: cumulative reference propagation downward to
some image point at z′ then back up, maintaining the overall pseudo-distance 2z ′. This rule is
implicit in the presentation of the inverse scattering subseries for predicting the spatial location of
reflectors and subsequent developments (Weglein et al., 2002). This is in contrast to diagrams/terms
in the series which involve scattering combinations of greater complexity, for instance the third-order
diagram seen in Figure 1c; the early intuition and subsequent analysis and algorithm development
has revealed that such a diagram corresponds to tasks associated with internal multiple attenuation
(Weglein et al., 1997).

2.1 Postulating an imaging-inversion subseries

The creation of algorithms involved with imaging and inversion using the proposed “rule” above,
requires the collection and computation of terms and sub-terms whose diagrams are similar to those
of Figure 1b. We demonstrate how such a collection can occur using a simple 1D normal incidence
milieu. The raw terms in the series are integrals over reference propagation depths. For instance,
one of the third order terms of the series, after the perturbation operator is specified to the 1D
acoustic case, in which V = k2α, is

I3 =F (k)

∫ ∞

−∞
eikz′α1(z

′)

∫ ∞

−∞
eik|z

′−z′′|α1(z
′′)

×
∫ ∞

−∞
eik|z

′′−z′′′|α1(z
′′′)eikz′′′dz′′′dz′′dz′

(14)

where F (k) is a function of wavenumber. The arguments in the exponentials describe a path of
propagation from source → z′′′ → z′′ → z′ → receiver. To compute this integral the absolute value
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Figure 1: Candidate and non-candidate imaging and/or inversion scattering diagrams. (a) The lin-
ear, single-scattering diagram is the prototype diagram-type for processing and inversion of
primaries. (b) Examples of subsequent higher-order diagrams that involve a single direction
change in depth z, i.e. that maintain a total propagation distance in pseudo-depth of 2z;
these are deemed to be involved with imaging and inversion. (c) An example of a higher-order
term that mimics reverberative event paths; these are deemed to be concerned with multiple
processing.

bars are jettisoned in favor of four additive cases, amongst which are, for instance,

F (k)

∫ ∞

−∞

∫ z′

−∞

∫ z′′

−∞
ei2kz′α1(z

′)α1(z
′′)α1(z

′′′)dz′′′dz′′dz′, (15)

and

F (k)

∫ ∞

−∞

∫ z′

−∞

∫ ∞

z′′
ei2k(z′−z′′+z′′′)α1(z

′)α1(z
′′)α1(z

′′′)dz′′′dz′′dz′. (16)

Inspection of the argument of the resultant exponential functions reveals that the former of these
terms is a sum over propagations that is already consistent with the extended single-scattering idea,
i.e. the total propagation distance in the reference medium is 2z ′. Meanwhile the latter involves
a more complicated path and generally longer distance. It does not amount to a total distance of
2z′ except for a few special cases, for instance when z ′′ = z′′′. Notice that in equation (15) the
outermost integral has the form of a Fourier transform. From here, the F (k) may be interpreted
as a differential operator in the spectral domain, acting on the rest of the integrand. The forms
for the terms in the inverse scattering series as above are the immediate result of viewing these
quantities as such in the conjugate, space, domain. The results we quote hereafter will follow this
approach also, to permit comparison to previously referenced imaging/inversion algorithms.

A strategy of manipulating the integrals of the inverse scattering series and collecting the terms
that mimic this single-scattering path has been followed and patterns therein analyzed. Some
terms/integrals, like equation (15), need no manipulation; others, like equation (16), do. The
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manipulations effectively extract the “special cases” referred to above from the integrals through
integration by parts and exchange of dummy integration variables. Here a candidate generating
function derived from this analysis is presented in two forms. Consider the sum:

αII(z) =

∞∑

j=1

Kj

(∫ z

0
α1(z

′)dz′
)(j)

, (17)

where the superscript (j) denotes the j’th derivative with respect to z, and

Kj+1 =
(−1)j

(j + 1)22j

j∑

k=0

1

k!(j − k)! . (18)

This series reproduces a subset of the terms of the inverse scattering series that conform to the
diagram-rule stated above: namely, that there be one and one only direction change in z, and thus
that the total propagation pseudo-depth must be 2z (since we have set source and receiver depths
to zero). In the remainder of this section we analyze the meaning and behavior of equation (17).
The subseries expressed by equation (17), and especially the coefficient Kn, may be arrived at by
observing patterns in the order-by-order behavior of the coefficients of the scattering integrals; as
such it retains something of the raw form of the inverse scattering series terms deemed to process
primaries. We note that there are other equivalent mathematical forms. Here we quote one such
expression and show that it leads to a closed-form for the 1D cases under study. The quantity
αII is precisely recaptured by the following expression, which, via a forward and inverse Fourier
transform and the identification of a Taylor’s series expansion of an exponential, collapses as also
follows.

αII(z) =
∞∑

j=0

(−1/2)j

j!

[
α1(z)

(∫ z

0
α1(z

′)dz′
)j
](j)

=
1

2π

∫ ∞

−∞
dΩeiΩz

∫ ∞

−∞
dz′e−iΩ[z′+ 1

2

R z′

0 α1(z′′)dz′′]α1(z
′),

(19)

in which the superscript (j) again denotes the n’th derivative with respect to z.

2.2 An analytic example

We here examine a simple analytical example of the closed-form aggregate of the primary-processing
inverse scattering series terms, equation (19). The point will be to derive some insight into the
underlying non-linear data activity: how do the events of a data set act upon each other to direct
the re-location of reflectors and the alteration of contrast amplitudes? The leading-order component
of this example is similar to that of Innanen et al. (2006); the high order component is new.

We consider models in which layers of wavespeed cn are placed in a homogeneous background
of wavespeed c0; layer interfaces are at depths zn, where z1 divides the reference medium from
the shallowest layer. We place the source and receiver at zero depth with no significant loss of
generality: zs = zg = z0 = 0. The reflection and transmission coefficients at interface zn are given
by

Rn =
cn − cn−1

cn + cn−1
, Tn−1,n =

2cn−1

cn−1 + cn
, (20)
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with “effective” reflection coefficients

R′
n =

n−1∏

i=1

(1−R2
i )Rn (21)

containing the cumulative effects of transmission down to the interface at zn. A primary data set
in the frequency domain arising from an N interface model is

D(ω) =
N∑

n=1

R′
ne

iω
Pn

i=1(zi−zi−1)/ci−1 . (22)

These data set types will be used for the simple analytical and numerical commentary in the
remainder of this paper.

Equation (19) is here enacted upon an analytically derived linear inverse output α1(z). We consider
the primary reflections from a normal incidence acoustic experiment above a single layer, with
interfaces at z1 and z2 as described in the previous section. The data and the linear inversion
result, in both the depth and its conjugate (wavenumber) domains are, respectively,

D(ω) = R1e
i2ωz1/c0 +R′

2e
i2ωz1/c0ei2ω(z2−z1)/c1 ,

α1(z) = 4R1H(z − z̃1) + 4R′
2H(z − z̃2),

α1(Ω) = 4R1
e−iΩez1

iΩ
+ 4R′

2

e−iΩez2

iΩ
,

(23)

where H(·) is the Heaviside function. The interfaces in α1 are in pseudo-depth, i.e., they have been
located on the assumption that waves have propagated everywhere with the reference wavespeed
c0. This means that the linearly-imaged depth of the first interface is coincident with the actual
depth, z̃1 = z1, but the depth of the second, z̃2 = c0τ/2, where τ = 2z1/c0 + 2(z2 − z1)/c1, is
not. Furthermore, the amplitudes of the linear inverse are both incorrect; the actual amplitudes
of α(z) = 1− c20/c2(z) are non-linear in the reflection coefficients. With α1 in hand we may begin
computing analytically αII(Ω) =

∫∞
−∞ e−iΩzαII(z)dz

′:

αII(Ω) =

∫ ∞

−∞
e
−iΩ

h
z′+ 1

2

R z′

0 α1(z′′)dz′′
i

α1(z
′)dz′. (24)

Making use of equation (23), we have as a preliminary quantity

∫ z′

0
α1(z

′′)dz′′

=





0 z′ < z̃1
4R1(z

′ − z̃1) z̃1 < z′ < z̃2
4R1(z̃2 − z̃1) + [4R1 + 4R′

2] (z
′ − z̃2) z̃2 < z′.

(25)

Broken up into these three cases, equation (24) becomes

αII(Ω) = I1 + I2 + I3, (26)
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where

I1 = 0,

I2 =
4R1

iΩ(1 + 2R1)

[
e−iΩz̃1 − e−iΩ[z̃2+2R1(z̃2−z̃1)]

]
,

I3 =
4(R1 +R′

2)

iΩ(1 + 2(R1 +R′
2))

e−iΩ[z̃2+2R1(z̃2−z̃1)].

(27)

Summing these results in

αII(Ω) = 4

[
R1

1 + 2R1

]
e−iΩz̃1

iΩ

+ 4

[
R1 +R′

2

1 + 2(R1 +R′
2)
− R1

1 + 2R1

]
e−iΩ[z̃2+2R1(z̃2−z̃1)]

iΩ
.

(28)

This Ω domain result, i.e., in the domain conjugate to depth z, is, like α1(Ω) in equation (23), the
sum of two Heaviside functions with step locations and amplitudes that are functions of the data
amplitudes R1 and R′

2. Comparing the full result with the linear inverse output, we have

α1(z) = 4R1H(z − z̃1) + 4R′
2H(z − z̃2),

αII(z) = 4A1H(z − z̃1) + 4A2H(z − Z̃2),
(29)

where

A1 =
R1

1 + 2R1
,

A2 = 4

[
R1 +R′

2

1 + 2(R1 +R′
2)
− R1

1 + 2R1

]
,

Z̃2 = z̃2 + 2R1(z̃2 − z̃1).

(30)

In essence equation (19) depicts the data (via α1) becoming part of the kernel of a Fourier-like
transformation of itself, whence derives its non-linear, “data-driven” nature. Examination of this
processing mechanism begins to clarify how a specific brand of (primary data)×(primary data)
multiplication can work to alter the location and magnitude of the reflectors in depth. To wit: the
combined effect of these non-linear activities is (in this 1D case) to generate an exponential kernel
that involves a direct integration of the data.

First consider the amplitudes. Notice that, because of the involvement of the data in the exponential
argument in equation (27), when the antiderivative is taken the data amplitudes drop into the
denominators of the coefficients of the steps, correcting their amplitudes. This occurs locally
anywhere α1 6= 0, and is in keeping with the fact that all linear contrast estimates are incorrect,
even for interfaces below the known (reference) component of the overburden. Second, consider
the step-locations. Step-discontinuities under a Fourier transform appear as weighted exponentials,
with the location of the discontinuity fixed in the argument; for instance, H(z − z∗) transforms
as e−iΩz∗/iΩ. The Fourier-like transform generated by the primary-processing inverse scattering
terms allows the data to interfere with the fixing of the step location, if there is data activity above
that step. The result is that deeper reflectors are positioned at locations that are determined by the
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Figure 2: Error plots for the location in depth of the second interface in the analytic single layer
example; linear (dashed) vs. the non-linear II subseries (solid). The plotted values, when
multiplied by the thickness of the layer, give the location error in units of depth.

overlying reflection strengths. This can be seen in action in the last equation of (30), and is very
similar to the behavior noted in the LOIS imaging algorithm (Shaw et al., 2004). Quantitatively,
consider (1) the difference between the linear approximation of the depth of the second interface,
z̃2, and the actual depth z2, and (2) the difference between the II approximation Z̃2 and the actual
depth z2. These differences, or the errors in the linear and non-linear approximations to the depth
of the second reflector, are:

z̃2 − z2 =

[
c0
c1
− 1

]
(z2 − z1)

Z̃2 − z2 =

[
c0
c1

(1 + 2R1)− 1

]
(z2 − z1).

(31)

Figure 2 contains a plot of the two error factors c0
c1
− 1 and c0

c1
(1 + 2R1) − 1 for a fixed reference

wavespeed (1500m/s) and a range of layer wavespeeds c1. The corrective effect of the II series
is notable, as is the accumulation of error in the II subseries especially at large contrast. (This
II error is due to primary processing terms of the inverse scattering series not captured by the
expressions utilized here, an issue discussed and addressed with algorithm development aimed at
greater capturing of the series imaging capability by Innanen (2005) and Liu et al. (2005)). Figure
3 contains a plot of the errors in amplitude of both the linear inversion and the II subseries inversion
for the layer for a range of layer wavespeeds. Again, the corrective effect of the non-linear primary
processing subseries is visible.

3 The Taylor’s series analogy for imaging in 1D and 2D acoustic media

The direct, non-linear, velocity-independent imaging algorithms that have arisen from the close
study of the terms and behavior of the inverse scattering series, and have been led by Shaw and
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Figure 3: Error plots for the recovered amplitude of the layer in the analytic single layer example;
linear (dashed) vs. the non-linear II subseries (solid).

Liu as discussed in the Introduction of this Annual Report, can be considered and analyzed in
light of a Taylor’s series analogy. In this section I will review the development and interpretation
of the leading-order imaging subseries algorithm for vertically-varying media as such (Weglein et
al., 2002; Shaw et al., 2004). Shaw (2005) has extended the algorithm and analysis to a pre-stack
data environment over an acoustic medium that experiences perturbations in wave velocity. I will
restrict my attention to the 1D normal incidence version of the algorithm for simplicity; the Taylor’s
series analogy at issue is unchanged by Shaw’s generalization.

The “mechanistic” behavior of the imaging algorithm is straightforward. The model-space quantity
α1(z), that is related linearly to the data given homogeneous acoustic reference Green’s operators,
has interface locations that are incorrect due to the spatially-sustained discrepancy between the
reference and actual media. The imaging algorithm amounts to the construction of a corrective
function that re-locates these interfaces to, or close to, the actual depth. The behavior of this
construction procedure is shaped and constrained by the inverse scattering series, such that (i)
the information that allows it to proceed is taken directly from the measured data, and (ii) the
corrective function is expressed in essence as a Taylor’s series about the linear quantity.

Following the references quoted above and using the scattering-theoretic components appropriate
for a 1D normal incidence acoustic experiment and depth-variations in wave velocity, the terms of
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the inverse scattering series α = α1 + α2 + α3 + ... may be expressed up to third order as

α1(z) =4

∫ z

0
D(zr|z′)dz′,

α2(z) =− 1

2
α2

1(z)−
1

2
α′

1(z)

∫ z

0
α1(z

′)dz′,

α3(z) =
3

16
α3

1(z) +
1

8
α′′

1(z)

(∫ z

0
α1(z

′)dz′
)2

+
3

4
α′

1(z)α1(z)

∫ z

0
α1(z

′)dz′ − 1

8
α′

1(z)

∫ z

0
α2

1(z
′)dz′

+ MULTIPLE ELIMINATION TERMS.

(32)

This is one of potentially many forms for the terms αn, generated using an integration-by-parts
strategy. It distinguishes itself by producing terms that involve weighted derivatives, and weighted
powers, of the linear α1. I focus on a portion of the former here, the sub-term type that has
been identified by the originating researchers as being associated with the problem of building the
corrective imaging function. The terms that involve the n’th derivative of α1 multiplied by the
n’th power of the integral of α1 form this subseries. The expression

αIM (z) =
∞∑

n=0

(−1/2)n

n!
α

(n)
1 (z)

(∫ z

0
α1(z

′)dz′
)n

(33)

reproduces it at all orders. From this point it becomes possible to discuss not only the Taylor’s
series analogue followed by this portion of the inverse scattering series, but to further understand
how the data information is folded into the procedure. A generic 1D Taylor’s series is

f(z + Z) = f(z) + f ′(z)Z +
1

2!
f ′′(z)Z2 + ..., (34)

where a single function f is estimated at an output point z+Z as a sum of weighted n’th derivatives
of the function at an input point z. The weights are determined by the distance between the input
and output points (Z). The imaging subseries operates in a manner very closely aligned with this
Taylor’s series, but with a fundamentally different set of inputs and outputs. Equation (33) can be
expanded and compared to equation (34):

αIM (z) = α1(z) + α′
1(z)

(
−1

2

∫ z

0
α1(z

′)dz′
)

+
1

2!
α′′

1(z)

(
−1

2

∫ z

0
α1(z

′)dz′
)2

+ ... (35)

Clearly the linear inverse α1 is identifiable with the function f at the input point z in the standard
Taylor’s series, suggesting that this subseries is in some sense an expansion about the linear inverse.
Equally clearly, differences arise when the outputs, or LHS, of equations (33) and (34) are compared.
Whereas the straightforward Taylor’s series purports to represent the same function, f , evaluated
at a new output point, z + Z, we have not thus far had any reason to consider the output of
this subseries of the inverse scattering series to act likewise; rather, it has been simply called
something entirely new, αIM (z). This analogy drawn between the terms of equation (33) and the
Taylor’s series, however, suggests that αIM is not an entirely new function, but rather a version
of the input function expressed on an altered, perhaps warped and/or shifted, coordinate system.
Furthermore, the new coordinate system being apparently proffered by this subseries is defined,
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not by a given/chosen distance Z from the point about which a Taylor’s series is being computed,
but rather directly in terms of the reflection data via α1. Specifically, the weights Z of the Taylor’s
series are replaced with −1/2

∫ z
0 α1(z

′)dz′, a quantity that retains the dimensions of depth but does
so through the incorporation of cumulative linear transmission information directly from the data.

A more compact algorithm and a framework for studying the convergence properties of the imaging
subseries is presented by Shaw et al. (2004). Expressing the n’th derivative in equation (33) as an
inverse Fourier transform, the portions of the algorithm that involve an n’th power are collected
and summed, resulting in an overall exponential function:

αIM (z) =
∞∑

n=0

(−1/2)n

n!
α

(n)
1 (z)

(∫ z

0
α1(z

′)dz′
)n

=

∫ ∞

−∞
dkeik(z− 1

2

R z
0 α1(z′)dz′)α1(k)

= α1

(
z − 1

2

∫ z

0
α1(z

′)dz′
)
.

(36)

3.1 Closed-forms through Taylor’s series analogy

The most practically compelling use of the Taylor’s series analogy is its “predictive” capability.
In this section the analogy is used to deduce the 1D normal incidence closed form of Shaw et
al. (2004), using only second-order inverse series terms. This same approach is then applied to
create something new: a postulate of a closed form for 2D and 3D direct non-linear imaging, that,
similarly, requires as input only the second-order inverse series terms of Liu et al. (2004).

Let’s reconsider equation (35) for a moment, and suggest that it is, in fact, acting in some ways like
a classic Taylor’s series. That is, through a set of derivatives of the input function at a certain z,
it is creating the same function at a different z, say z + Z. In other words, working from equation
(34), it is constructing

αIM = α1(z + Z), (37)

using an infinite series. The Taylor’s series analogy is now at its most useful: it will tell us what
the series is doing, and only require of us that we have computed as far as the 2nd order term.
Judging from equation (34), Z must be everything that acts as a coefficient to the first derivative
of α1(z). Going back to the second-order equations in (32), and collecting everything that acts as
such a coefficient, we have that

Z = −1

2

∫ z

0
α1(z

′)dz′. (38)

(There are others at higher order, but we’ll stay with leading-order for the moment.) Hence the
analogy leads to the summed form of the imaging operation:

αIM = α1

(
z − 1

2

∫ z

0
α1(z

′)dz′
)
, (39)
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which is the closed form leading order imaging subseries of Shaw et al. (2004). In short, the Taylor’s
series analogy produces nothing new in 1D. But the non-new thing it produces is produced fast,
with a bare minimum of calculation of actual inverse scattering series terms. More compellingly,
it is based on analysis that carries over in concept to 2D and 3D (to the extent that any 1D-like
wave theoretic inversion scheme carries over into 2D and 3D, at any rate).

A 2D Taylor’s series seeks to express a function f(x+X, z+Z) at some location in terms of it and
its derivatives at a different location:

f(x+X, z + Z) =f(x, z) + fx(x, z)X + f z(x, z)Z

+
1

2

[
fxx(x, z)X2 + 2fxz(x, z)XZ + f zz(x, z)Z2

]
+ ...,

(40)

where the superscripts denote partial derivatives. So, suppose that a component of the inverse
scattering series is attempting to act in 2D the same way the full imaging attempts to act in 1D –
with a shift operation. Extending the analogy, we would postulate the existence of

αIM (x, z) =α1(x+X, z + Z)

=α1(x, z) + αx
1(x, z)X + αz

1(x, z)Z+

+
1

2

[
αxx

1 (x, z)X2 + 2αxz
1 (x, z)XZ + αzz

1 (x, z)Z2
]
+ ... .

(41)

If there is an imaging component of the inverse scattering series that acts this way, we again should
be able to characterize it to a useful extent with minor recourse to the inverse scattering series
itself. In fact, the suggestion again seems to be that if we go to the second-order terms of the
acoustic constant density inverse scattering series for media whose wavespeed varies in 2D, and
find the coefficients of partial derivatives of α1 with respect to x and z, we will have a leading-order
approximation of our desired X and Z. Liu et al. (2005) have computed these – and more. We
have

αIM (x, z) = α1

(
x+

1

2

∫ z

0

∫ z′

0
αx

1(x, z′′)dz′′dz′, z − 1

2

∫ z

0
α1(x, z

′)dz′

)
, (42)

an operation that has immediate extension to the second lateral dimension as well.

An expression like that of equation (42) but with no x-direction shift forms the basis for the 2D
imaging tests going at present, having been derived by Liu et al. (2005). Numerical tests of the
x-shift suggested by the full equation (42), done by Liu, are inconclusive at present. Empirically
it seems that the double integral of the linear inverse α1 creates a lateral shift that is far greater
than that required. The relevance of equation (42) as an imaging operator, its calculation for some
simple models, and its relation to the more complete 2D and 3D wave problem (see, e.g., Innanen
(2006)), are matters of investigation.

4 Conclusions

This paper continues in the analysis and interpretation of components of the inverse scattering
series, that are deemed to concern tasks of imaging and inversion (coupled and uncoupled). The
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coupling subseries of Innanen (2003) and Innanen and Weglein (2003), at leading order, and Inna-
nen (2005), at high order, are reviewed, and an error analysis is provided for a 1D normal incidence,
single layer example. Also, the capture of velocity-independent imaging terms in multiple dimen-
sions, by Liu et al. (2005), is extended via an approximation that involves a 2D Taylor’s series
analogy. Numerical tests of the latter to date are inconclusive, but suggest further terms or de-
velopment are necessary of such analogy-based shift as an approximate multidimensional imaging
frameworks. Further relevant analysis and a reconciliation between the shift forms of Liu et al.
(2005) is presented in this report by Zhang et al. (2006).
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Direct non-linear inversion of multi-parameter 1D elastic media using the
inverse scattering series

Haiyan Zhang and Arthur B. Weglein

Abstract

In this report, research work on direct inversion for two parameter acoustic media is extended
to the three parameter elastic case. The first direct non-linear inversion solution for 1D elastic
medium (P velocity, shear velocity and density vary in depth) presented in the last annual
report is corrected. The terms for moving mislocated reflectors are shown to be separated from
amplitude correction terms. Although in principle this direct inversion approach requires all
four components of elastic data, synthetic tests indicate that consistent value-added results may
be achieved given only D̂PP measurements. We can reasonably infer that further value would
derive from actually measuring D̂PP , D̂PS , D̂SP and D̂SS as the method requires. For the case
that all four components of data are available, we give one consistent method to solve for all
of the second terms (the first terms beyond linear). The method is direct with neither a model
matching nor cost function minimization.

1 Introduction

The objective of seismic processing is to predict the location (imaging) and properties (inversion)
of the hydrocarbon resources in the earth using reflection data. For most of the current imaging
and inversion algorithms, only primaries are considered as signal. All of the other seismic events
need to be removed. So in some sense, imaging and inversion are both “inverse” process of the
primaries. These two inverse processes can be performed either separately (inversion after imaging)
or together (e.g., Amundsen et al., 2005a; Innanen, 2003; Weglein et al., 2003). Currently the most
popular way is to do it separately. One possible advantage of doing them separately is that each
task has lower ambition so that the algorithm might be more robust. The other argument is that
imaging and inversion operate on the data very differently in the sense that inversion is inevitably a
non-linear process of the data while imaging can either be a linear or non-linear process, depending
on whether or not the actual medium velocity is required. Imaging procedures such as FK, finite
difference and phase shift migration require actual medium velocity and only need linear operations
of the data. The idea of these imaging techniques is essentially: depth z = vt. This is a simple but
very robust method and is being widely used in practice. There are on-going efforts to perform
imaging non-linearly in the data in which only reference medium velocity has been used (see e.g.,
Liu et al., 2005; Shaw, 2005; Weglein et al., 2002). A key concept of these methods is that, compared
to those conventional imaging algorithms, the amplitude as well as the arrival time of signal will
be used. The methods in this category are especially useful when the actual subsurface medium
velocity is difficult to obtain. Inversion, on the other hand, is a guaranteed non-linear process of
the data. Even for the simplest normal incidence one interface model, the relationship between the
reflected data and earth property changes is non-linear. An inversion result that only involves linear
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operations of the data will only give good approximation for small or smooth medium changes. The
method provided in this report is a non-linear inversion of the data and only reference medium
information will be used. This non-linear inversion method, together with the above mentioned
imaging with reference medium velocity algorithm, are both based on inverse scattering series.

The application of inverse scattering series in seismic exploration has become very successful and
well-known since the development of the algorithms to remove free surface multiples and attenuate
internal multiples (Weglein et al., 1997). A very important concept that has been used to derive
these two techniques is the isolated task specific series (Weglein et al., 2003). That is, instead of
using the whole inverse scattering series to perform multiple removal, imaging and inversion all
together, a specific subset of the series has been isolated to accomplish one task only at each step.
After each task has been finished, the problem is restarted assuming that the former task doesn’t
exist at all. A new subset series is then pursued to address the following problem. All of the derived
subseries will only need the reference medium information and no subsurface medium properties
are required. The above mentioned imaging with reference medium velocity and the non-linear
method in this report are the corresponding isolated task-specific imaging and inversion subseries
respectively. It is also important to note that both the imaging and inversion algorithms derived
from the inverse scattering series are direct methods, which means that the final results of the
imaging and inversion are calculated directly step by step. There are also indirect methods that
might be non-linear inversion of the data. Instead of seeking the direct solution, those methods
often try to find an objective function which is assumed to be zero or minimized when the correct
result is obtained. Those indirect methods certainly have values sometimes. The fundamental
disadvantage of these methods is that the results or models obtained are not necessarily the correct
ones. At this point, the inverse scattering series based imaging and direct non-linear inversion
methods are more advantageous.

Recently, Amundsen and co-workers have written and published several papers (Amundsen et al.,
2005a; Amundsen et al., 2005b) using inverse scattering formalism, and seeking non-series approxi-
mate solutions to objectives associated with primaries. Recognizing certain patterns within results
for depth imaging and inversion that were derived by Simon Shaw, A Weglein, R Keys, Fang Liu,
D Foster, B Nita, Kris Innanen, and H Zhang and co-workers. Amundsen et al. were cleverly able
to recast and reproduce those earlier available 1D results without resorting to a series, but with
an approximate single term for the scattered field. They exploit a WKBJ analytic form, available
in 1D, to directly invert an approximate expression for the scattered field, for an approximate
perturbation, that simultaneously resides within the WKBJ approximate to the total field, and the
perturbation term within the integral itself. The Amundsen research and contribution provides
new insights and understanding, and will be valuable in the campaign into imaging beneath highly
complex heterogeneous media, where not only analytic WKBJ forms are not available, but even
finite difference modeling has difficulty adequately capturing those complex wave responses.

The inverse scattering task specific subseries for imaging and inverting primaries is currently the
only viable candidate to address that level of complexity. All of these subseries act in a certain
sequence so that the total seismic data can be processed accordingly. The order of the processing
is (1) free surface multiple removal (2) internal multiple removal (3) imaging and (4) inversion.
The two multiple removal procedures are model type independent, i.e., they work for acoustic,
elastic and anelastic medium. Taking internal multiples from attenuation to elimination is being
progressed by Ramı́rez and Weglein (2005). Compared with model type independent multiple
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removal procedures, there is a full expectation that tasks and algorithms associated with primaries
will have a closer interest in model type. For example, there is no way to even imagine that
medium property identification can take place without reference to a specific model type. Tasks
and issues associated with structural determination, without knowing the medium, are also vastly
different depending on the number of dimensions of variation in velocities that are required for
imaging. Hence, a staged approach and isolation of tasks philosophy is essential in this yet tougher
neighborhood, and even more in demand for seeking insights and then practical algorithms for these
more complicated and daunting objectives. We adopt the staged and isolation of issues approach for
primaries. The isolated task achievement plan can often spin-off incomplete but useful intermediate
objectives. The test and standard is not necessarily how complete the method is but rather how
does it compare to, and improve upon, current best practice.

The stages within the strategy for primaries are as follows: (1) 1D earth, with one parameter,
velocity as a function of depth, and a normal incidence wave; (2) 1D earth with one parameter
subsurface and offset data, one shot record; (3) 2D earth with one parameter, velocity, varying in x
and z, and a suite of shot records; (4) 1D acoustic earth with two parameters varying, velocity and
density, one propagation velocity, and one shot record of PP data, and (5) 1D elastic earth, two
elastic isotropic parameters and density, and two wave speeds, for P and S waves, and PP, PS, SP,
and SS shot records data collected. In this report we make a major step towards realism for target
identification by extending the earlier work on non-linear inversion of 2D acoustic data for a two
parameter 1D medium (Zhang and Weglein, 2003) to three parameter 1D elastic medium. This is
the first step of direct non-linear inversion from acoustic to elastic – a more realistic world. We take
these steps and learn to navigate through this complexity and steer it towards useful and powerful
algorithms. However, more realism is more complicated with more issues involved. Following the
task separation strategy, we ask the question what kind of tasks should we expect in this more
complex, elastic, setting? In the acoustic case, for example, there is only one velocity (P wave
velocity) involved and there is only one mislocation. The imaging terms only need to move the
one mislocation to the correct location. When we extend our previous work on the two parameter
acoustic case to the present three parameter elastic case, there will be four mislocations because of
the two reference velocities (P wave velocity and S velocity). Therefore, for the non-linear elastic
inversion, there will be more tasks that need to be achieved. For example, the “four mislocations”,
which come from linear inversion, need to be moved to one correct location.

In this report, the first non-linear inversion term for three parameter 1D elastic medium presented
in last annual report is corrected. In theory, it is impossible to perform exact inversion without all
four components of data. However, as you can find in the following numerical tests (got from the
new corrected solution) for four models, very good inversion results can still be achieved even when
only PP data measurements are available. This means that we could perform elastic inversion only
using pressure measurements, i.e. towed streamer data. For the case that all four components of
data are available, a consistent method is provided.

The report has the following structure: Section 2 is a brief introduction to the inverse scattering
series and then presents, respectively, the derivations and numerical tests for elastic non-linear
inversion when only PP data is available. A full non-linear elastic inversion method is also provided.
Finally we will present some concluding remarks.
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2 Background

In this section we consider the inversion problem in two dimensions for an elastic medium. For
convenience, we change the basis and transform the equations of displacement space into PS space.
In the PS domain, the inverse scattering series is (Weglein and Stolt, 1992; Matson, 1997; Zhang
et al., 2005)

V̂ = V̂1 + V̂2 + V̂3 + · · · . (1)

And
D̂ = Ĝ0V̂1Ĝ0, (2)

Ĝ0V̂2Ĝ0 = −Ĝ0V̂1Ĝ0V̂1Ĝ0, (3)

....

The perturbation is given by V̂ =

(
V̂ PP V̂ PS

V̂ SP V̂ SS

)
, the (causal) Green’s operator by Ĝ0 =

(
ĜP

0 0

0 ĜS
0

)

and the data by D̂ =

(
D̂PP D̂PS

D̂SP D̂SS

)
.

3 Linear inversion of 1D elastic medium

Writing Eq. (2) in matrix form leads to four equations

D̂PP = ĜP
0 V̂

PP
1 ĜP

0 , (4)

D̂PS = ĜP
0 V̂

PS
1 ĜS

0 , (5)

D̂SP = ĜS
0 V̂

SP
1 ĜP

0 , (6)

D̂SS = ĜS
0 V̂

SS
1 ĜS

0 . (7)

Assuming source and receiver depths are zero, in the (ks, zs; kg, zg;ω) domain, we get respectively,

D̃PP (kg, 0;−kg, 0;ω) = −1

4

(
1−

k2
g

ν2
g

)
ã(1)

ρ (−2νg)−
1

4

(
1 +

k2
g

ν2
g

)
ã(1)

γ (−2νg) +
2k2

gβ
2
0

(ν2
g + k2

g)α
2
0

ã(1)
µ (−2νg),

(8)

D̃PS(νg, ηg) = −1

4

(
kg

νg
+
kg

ηg

)
ã(1)

ρ (−νg − ηg)−
β2

0

2ω2
kg(νg + ηg)

(
1−

k2
g

νgηg

)
ã(1)

µ (−νg − ηg), (9)

D̃SP (νg, ηg) =
1

4

(
kg

νg
+
kg

ηg

)
ã(1)

ρ (−νg − ηg) +
β2

0

2ω2
kg(νg + ηg)

(
1−

k2
g

νgηg

)
ã(1)

µ (−νg − ηg), (10)
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D̃SS(kg, ηg) = −1

4

(
1−

k2
g

η2
g

)
ã(1)

ρ (−2ηg)−
[
η2

g + k2
g

4η2
g

−
2k2

g

η2
g + k2

g

]
ã(1)

µ (−2ηg), (11)

where ν2
g + k2

g = ω2

α2
0
, η2

g + k2
g = ω2

β2
0
. Now, using k2

g/ν
2
g = tan2 θ and k2

g/(ν
2
g + k2

g) = sin2 θ, where θ

is the P-wave incident angle (see Fig. 1). Then, Eq. (8) becomes

D̃PP (νg, θ) = −1

4
(1− tan2 θ)ã(1)

ρ (−2νg)−
1

4
(1 + tan2 θ)ã(1)

γ (−2νg) +
2β2

0 sin2 θ

α2
0

ã(1)
µ (−2νg). (12)

q
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Incident P-wave

Figure 1: Response of incident compressional wave on a planar elastic interface. α0, β0 and ρ0 are the
compressional wave velocity, shear wave velocity and density of the upper layer, respectively;
α1, β1 and ρ1 denote the compressional wave velocity, shear wave velocity and density of the
lower layer. RPP , RSP , TPP and TSP denote the coefficients of the reflected compressional
wave, the reflected shear wave, the transmitted compressional wave and the transmitted
shear wave, respectively.

4 Non-linear inversion of 1D elastic medium for 2D experiment

Writing Eq. (3) in matrix form:

(
ĜP

0 0

0 ĜS
0

)(
V̂ PP

2 V̂ PS
2

V̂ SP
2 V̂ SS

2

)(
ĜP

0 0

0 ĜS
0

)

= −
(
ĜP

0 0

0 ĜS
0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0

0 ĜS
0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0

0 ĜS
0

)
, (13)

leads to four equations

ĜP
0 V̂

PP
2 ĜP

0 = −ĜP
0 V̂

PP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜP
0 V̂

PS
1 ĜS

0 V̂
SP
1 ĜP

0 , (14)

ĜP
0 V̂

PS
2 ĜS

0 = −ĜP
0 V̂

PP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜP
0 V̂

PS
1 ĜS

0 V̂
SS
1 ĜS

0 , (15)

ĜS
0 V̂

SP
2 ĜP

0 = −ĜS
0 V̂

SP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜS
0 V̂

SS
1 ĜS

0 V̂
SP
1 ĜP

0 , (16)
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ĜS
0 V̂

SS
2 ĜS

0 = −ĜS
0 V̂

SP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜS
0 V̂

SS
1 ĜS

0 V̂
SS
1 ĜS

0 . (17)

Since V̂ PP
1 relates to D̂PP , V̂ PS

1 relates to D̂PS , and so on, the four components of the data will
be coupled in the non-linear elastic inversion. We cannot perform the direct non-linear inversion
without knowing all components of the data. As shown above, when we extend our work on the two
parameter acoustic case to the present three parameter elastic case, it is not just simply adding one
more parameter, but there are more issues involved. Even for the linear case, the linear solutions
found in (8) ∼ (11) are much more complicated than those of the acoustic case. For instance, four
different sets of linear parameter estimates are produced from each component of the data. Also,
three or four distinct reflector mislocations arise from the two reference velocities (P-velocity and
S-velocity). However, in some situations like the towed streamer case, we don’t have all components
of data available. A particular non-linear approach has been chosen to side-step a portion of this
complexity and address our typical lack of four components of elastic data: we use D̂PP as our
fundamental data input, and perform a reduced form of non-linear elastic inversion, concurrently
asking: what beyond-linear value does this simpler framework add? This particular approach is
presented in the following section.

4.1 Special approach and numerical tests with only D̂PP available

When assuming only D̂PP are available, first, we compute the linear solution for a
(1)
ρ , a

(1)
γ and a

(1)
µ

from Eq. (8). Then, substituting the solution into the other three Eqs. (9), (10) and (11), we
synthesize the other components of data — D̂PS , D̂SP and D̂SS . Finally, using the given D̂PP

and the synthesized data, we perform the non-linear elastic inversion, getting the following second
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order (first term beyond linear) elastic inversion solution from Eq. (14),

(
1− tan2 θ

)
a(2)

ρ (z) +
(
1 + tan2 θ

)
a(2)

γ (z)− 8b2 sin2 θa(2)
µ (z)

=− 1

2

(
tan4 θ − 1

) [
a(1)

γ (z)
]2

+
tan2 θ

cos2 θ
a(1)

γ (z)a(1)
ρ (z)

+
1

2

[(
1− tan4 θ

)
− 2

C + 1

(
1

C

)(
α2

0

β2
0

− 1

)
tan2 θ

cos2 θ

] [
a(1)

ρ (z)
]2

− 4b2
[
tan2 θ − 2

C + 1

(
1

2C

)(
α2

0

β2
0

− 1

)
tan4 θ

]
a(1)

ρ (z)a(1)
µ (z)

+ 2b4
(

tan2 θ − α2
0

β2
0

)[
2 sin2 θ − 2

C + 1

1

C

(
α2

0

β2
0

− 1

)
tan2 θ
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µ (z)
]2

− 1

2

(
1

cos4 θ

)
a(1)′

γ (z)

∫ z

0
dz′
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γ

(
z′
)
− a(1)

ρ

(
z′
)]

− 1

2

(
1− tan4 θ

)
a(1)′

ρ (z)
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0
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γ

(
z′
)
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ρ

(
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+ 4b2 tan2 θa(1)′
µ (z)
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γ

(
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ρ

(
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2
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1
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0

β2
0
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tan2 θ

(
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µ
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ρ
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0
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ρ
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, (18)

where a
(1)′
ρ

(
(C−1)z′+2z

(C+1)

)
= d

[
a

(1)
ρ

(
(C−1)z′+2z

(C+1)

)]
/dz, b = β0

α0
and C =

ηg

νg
= 1

b

√
1−b2 sin2 θ√
1−sin2 θ

.

The first five terms on the right side of the Eq. (18) are inversion terms, i.e., contribute to amplitude
correction. The other terms on the right side of the equation are imaging terms. Both the inversion
terms and the imaging terms (especially the imaging terms) become much more complicated with
the extension to elastic media from acoustic. The integrand of the first three integral terms is the

first order approximation of the relative change in P-wave velocity. The derivatives a
(1)′
γ , a

(1)′
ρ and

a
(1)′
µ in front of those integrals are acting to correct the wrong locations caused by the inaccurate

reference P-wave velocity. The other four terms with integrals will be zero as β0 → 0 since in this
case C →∞. In the following, we test this approach numerically.

For one interface 1D elastic medium case, as shown in Fig. 1, the reflection RPP coefficient has
the following form (Foster et al., 1997)

RPP =
N

D
. (19)
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Here we have

N =− (1 + 2kx2)2b
√

1− c2x2
√

1− d2x2 − (1− a+ 2kx2)2bcdx2

+ (a− 2kx2)2cd
√

1− x2
√

1− b2x2

+ 4k2x2
√

1− x2
√

1− b2x2
√

1− c2x2
√

1− d2x2 − ad
√

1− b2x2
√

1− c2x2

+ abc
√

1− x2
√

1− d2x2. (20)

D =(1 + 2kx2)2b
√

1− c2x2
√

1− d2x2 + (1− a+ 2kx2)2bcdx2

+ (a− 2kx2)2cd
√

1− x2
√

1− b2x2

+ 4k2x2
√

1− x2
√

1− b2x2
√

1− c2x2
√

1− d2x2 + ad
√

1− b2x2
√

1− c2x2

+ abc
√

1− x2
√

1− d2x2. (21)

a = ρ1/ρ0, b = β0/α0, c = α1/α0, d = β1/α0, k = ad2 − b2 and x = sin θ,

where the subscripts “0” and “1” denote the reference medium and actual medium respectively.
Using perfect data (Clayton and Stolt, 1981; Weglein et al., 1986)

D̃PP (νg, θ) = RPP (θ)
e2iνga

4πiνg
, (22)

and substituting Eq.(22) into Eq.(12), Fourier transform Eq.(12) over 2νg, for z > a and fixed θ,
we have

(1− tan2 θ)a(1)
ρ (z) + (1 + tan2 θ)a(1)

γ (z)− 8
β2

0

α2
0

sin2 θa(1)
µ (z) = 4RPP (θ)H(z − a). (23)

In this report, we numerically test the direct inversion approach on the following same four models
used in the last annual report:

Model 1: shale (0.20 porosity) over oil sand (0.10 porosity).

ρ0 = 2.32g/cm3, ρ1 = 2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s.

Model 2: shale over oil sand, 0.20 porosity.

ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 = 2627m/s, α1 = 3251m/s;β0 = 1245m/s, β1 = 2138m/s.

Model 3: shale (0.20 porosity) over oil sand (0.30 porosity).

ρ0 = 2.32g/cm3, ρ1 = 2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s.

Model 4: oil sand over wet sand, 0.20 porosity.

ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 = 3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s.
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To test and compare methods, the top of sand reflection was modeled for oil sands with porosities
of 10, 20, and 30%. The three models used the same shale overburden. An oil/water contact model
was also constructed for the 20% porosity sand.

The low porosity model (10%) represents a deep, consolidated reservoir sand. Pore fluids have little
effect on the seismic response of the reservoir sand. It is difficult to distinguish oil sands from brine
sands on the basis of seismic response. Impedance of the sand is higher than impedance of the
shale.

The moderate porosity model (20%) represents deeper, more compacted reservoirs. Pore fluids
have a large impact on seismic response, but the fluid effect is less than that of the high porosity
case. The overlying shale has high density compared to the reservoir sand, but the P-wave velocity
of the oil sand exceeds that of the shale. As a result, impedance contrast is reduced, and shear
wave information becomes more important for detecting the reservoir.

The high porosity model (30%) is typical of a weakly consolidated, shallow reservoir sand. Pore
fluids have a large impact on the seismic response. Density, P-wave velocity, and the α/β ratio
of the oil sand are lower than the density, P-wave velocity, and α/β ratio of the overlying shale.
Consequently, there is a significant decrease in density and P-bulk modulus and an increase in shear
modulus at the shale/oil sand interface.

The fourth model denotes an oil/water contact in a 20% porosity sand. At a fluid contact, both
density and P-wave velocity increase in going from the oil zone into the wet zone. Because pore
fluids have no effect on shear modulus, there is no change in shear modulus.

Using these four models, we can find the corresponding RPP from Eq. (19). Then, choosing three

different angles θ1, θ2 and θ3, we can get the linear solutions for a
(1)
ρ , a

(1)
γ and a

(1)
µ from Eq. (23),

and then get the solutions for a
(2)
ρ , a

(2)
γ and a

(2)
µ from Eq. (18).

There are two plots in each figure. The left ones are the results for the first order, while the right
ones are the results for the first order plus the second order. The red lines denote the corresponding
actual values. In the figures, we illustrate the results corresponding to different sets of angles θ1

and θ2. The third angle θ3 is fixed at zero.

The numerical results indicate that all the second order solutions provide improvements over the
linear for all of the four models. When the second term is added to the linear order, the results
become much closer to the corresponding exact values and the surfaces become flatter in a larger
range of angles. But the degree of those improvements are different for different models. How
accurately D̂PP effectively synthesize D̂PS , D̂SP and D̂SS determined the degree of benefit provided
by the non-linear elastic inversion.

Elastic non-linear inversion in 2D requires all four components of data. In this paper we present
the first direct non-linear elastic equations, and analyze an algorithm which requires only D̂PP

and approximately synthesizes the other required components. Value-added results are obtained.
Although D̂PP can itself provide useful non-linear direct inversion results, the implication of this
research is that further value would derive from actually measuring D̂PP , D̂PS , D̂SP and D̂SS , as
the method requires. In the following section, we give a consistent method with all four components
of data available.
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4.2 Full non-linear elastic inversion of all four components of data

Using four components of data, one consistent method to solve for the second terms is, first, using

the linear solutions as shown in Eqs. (8), (9), (10) and (11), we can get the linear solution for a
(1)
ρ ,

a
(1)
γ and a

(1)
µ in terms of D̂PP , D̂PS , D̂SP and D̂SS through the following way



a

(1)
ρ

a
(1)
γ

a
(1)
µ


 = (OTO)−1OT




D̂PP

D̂PS

D̂SP

D̂SS


 , (24)

where the matrix O is
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+
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)(
1− kPS
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g ηPS

g

)

1
4

(
kSP

g

νSP
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+
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g

ηSP
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)
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β2
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2ω2k
SP
g

(
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νSP
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(
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g
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[
kSS

g
2
+ηSS

g
2

4ηSS
g

2 − 2kSS
g

2

kSS
g

2+ηSS
g

2

]




, (25)

and OT is the transpose of matrix O, the superscript −1 denotes the inverse of the matrix OTO.

Then, we can get the solution for a
(2)
ρ , a

(2)
γ and a

(2)
µ in terms of a

(1)
ρ , a

(1)
γ and a

(1)
µ through the

following similar way 

a

(2)
ρ

a
(2)
γ

a
(2)
µ


 = (OTO)−1OTQ, (26)

Where the matrix Q is in terms of a
(1)
ρ , a

(1)
γ and a

(1)
µ .

Given θPP , as shown in Figure 2, we can find the corresponding angles θPS , θSP and θSS which
appear in O and Q (Details in Appendix A).

θPS = cos−1

[
4b2 cos2 θPP + 1− b2

4b cos θPP

]
,

θSP = cos−1

[
4b2 cos2 θPP − 1 + b2

4b2 cos θPP

]
,

θSS = cos−1
(
b cos θPP

)
,

where b = β0

α0
.

Based on this idea, we get the following non-linear solutions for Eqs. (14), (15), (16) and (17)
respectively.

The form of the solution for Eq. (14), i.e.,

ĜP
0 V̂

PP
2 ĜP

0 = −ĜP
0 V̂

PP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜP
0 V̂

PS
1 ĜS

0 V̂
SP
1 ĜP

0 ,
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PPq

PP PP

PSq

SS
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PP SS

SSq

SS SS

000
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000
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000
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111 ,, rba

Figure 2: Different incident angles.

is the same as Eq. (18). In the (ks, zs; kg, zg;ω) domain, we get the the other three solutions
respectively, for Eqs. (15), (16) and (17).

The solution for Eq. (15), i.e.,

ĜP
0 V̂

PS
2 ĜS

0 = −ĜP
0 V̂

PP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜP
0 V̂

PS
1 ĜS

0 V̂
SS
1 ĜS

0 ,
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1 ĜP

0 V̂
PP
1 ĜP
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1 ĜS

0 V̂
SP
1 ĜP
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0 V̂

SS
1 ĜS
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Figure 3: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s. For this model,

the exact value of aρ is 0.06. The linear approximation a
(1)
ρ (left) and the sum of linear and

first non-linear a
(1)
ρ + a

(2)
ρ (right).
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Figure 4: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s. For this model,

the exact value of aγ is 2.01. The linear approximation a
(1)
γ (left) and the sum of linear and

first non-linear a
(1)
γ + a

(2)
γ (right).
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Figure 5: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s. For this model,

the exact value of aµ is 4.91. The linear approximation a
(1)
µ (left) and the sum of linear and

first non-linear a
(1)
µ + a

(2)
µ (right).

0
10

20

30

40

50

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0

10

20

30

40

50

a
rh

o
1
+
a
rh

o
2

th
e
ta

2

theta1

0
10

20

30

40

50

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0

10

20

30

40

50

a
rh

o
1

th
e
ta

2

theta1

Figure 6: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 =
2627m/s, α1 = 3251m/s;β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value

of aρ is -0.022. The linear approximation a
(1)
ρ (left) and the sum of linear and first non-

linear a
(1)
ρ + a

(2)
ρ (right).
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Figure 7: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 =
2627m/s, α1 = 3251m/s;β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value

of aγ is 0.498. The linear approximation a
(1)
γ (left) and the sum of linear and first non-linear

a
(1)
γ + a

(2)
γ (right).
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Figure 8: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 =
2627m/s, α1 = 3251m/s;β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value

of aµ is 1.89. The linear approximation a
(1)
µ (left) and the sum of linear and first non-linear

a
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µ (right).
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Figure 9: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s. For this model,

the exact value of aρ is -0.103. The linear approximation a
(1)
ρ (left) and the sum of linear

and first non-linear a
(1)
ρ + a

(2)
ρ (right).
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Figure 10: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s. For this model,

the exact value of aγ is -0.295. The linear approximation a
(1)
γ (left) and the sum of linear

and first non-linear a
(1)
γ + a

(2)
γ (right).
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Figure 11: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s. For this model,

the exact value of aµ is 0.281. The linear approximation a
(1)
µ (left) and the sum of linear

and first non-linear a
(1)
µ + a

(2)
µ (right).
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Figure 12: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of

aρ is 0.022. The linear approximation a
(1)
ρ (left) and the sum of linear and first non-linear

a
(1)
ρ + a

(2)
ρ (right).
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Figure 13: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of

aγ is 0.19. The linear approximation a
(1)
γ (left) and the sum of linear and first non-linear
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γ + a

(2)
γ (right).
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Figure 14: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of

aµ is 0.001. The linear approximation a
(1)
µ (left) and the sum of linear and first non-linear
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µ (right).
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6 Conclusion

In this report, a framework and algorithm have been developed for more accurate target identifi-
cation. The elastic non-linear inversion requires all four components of data, but in this report we
analyzed an algorithm which inputs only D̂PP . Although D̂PP can itself provide useful non-linear
direct inversion results, the implication of this research is that further value would derive from
actually measuring D̂PP , D̂PS , D̂SP and D̂SS , as the method requires. For the case that all four
components of data available, we also provided a consistent method to solve for all of the second
terms. Further plan is the numerical test on this consistent full non-linear elastic inversion method.
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Appendix A

In this Appendix, we give the different coefficients before every linear quantity (a
(1)
γ , a

(1)
ρ , a

(1)
µ ) —

different incidence angle θ. For P to P case, we have

kPP
g =

ω

α0
sin θPP ,

νPP
g =

ω

α0
cos θPP ,

For S to P case,

kPS
g =

ω

β0
sin θPS ,

νPS
g =

ω

α0

√
1− α2

0

β2
0

sin2 θPS

ηPS
g =

ω

β0
cos θPS ,

For P to S case,

kSP
g =

ω

α0
sin θSP ,

νSP
g =

ω

α0
cos θSP

ηSP
g =

ω

β0

√
1− β2

0

α2
0

sin2 θSP ,
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For S to S case,

kSS
g =

ω

β0
sin θSS ,

ηSS
g =

ω

β0
cos θSS ,

Let the arguments of a
(1)
ρ and a

(1)
µ in Eqs. (8), (9), (10) and (11) equal, we need

−2νPP
g = −νPS

g − ηPS
g = −νSP

g − ηSP
g = −2ηSS

g ,

which leads to

2
ω

α0
cos θPP =

ω

α0

√
1− α2

0

β2
0

sin2 θPS +
ω

β0
cos θPS =

ω

α0
cos θSP +

ω

β0

√
1− β2

0

α2
0

sin2 θSP = 2
ω

β0
cos θSS ,

From the expression above, given θPP , we can find the corresponding θPS , θSP and θSS .

θPS = cos−1

[
4b2 cos2 θPP + 1− b2

4b cos θPP

]
,

θSP = cos−1

[
4b2 cos2 θPP − 1 + b2

4b2 cos θPP

]
,

θSS = cos−1
(
b cos θPP

)
,

where b = β0

α0
.
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Abstract

The inverse scattering series based direct non-linear inversion method has shown positive
results on its application to multi-parameter 1D acoustic and elastic media (see, e.g., Weglein
et al., 2003; Zhang et al., 2005; Zhang and Weglein, 2005). In this paper, we present another
application of this method to time-lapse seismic data aiming to distinguish pressure changes
from reservoir fluid changes. Two elastic parameters (Shear modulus and velocity ratio) are
chosen to discriminate the two changes. Synthetic tests indicate that these two parameters
are very useful in mapping the pressure and fluid changes; and, the direct non-linear inversion
method gives closer and more reliable parameter predictions compared to conventional linear
order approximation.

1 Introduction

Time-lapse seismic data can be defined as those seismic data acquired at different times over the
same area to assess changes in the subsurface with time, such as fluid movement or the fraction
of hydrocarbons that can be or has been produced from a well, reservoir or field. Optimizing
the reservoir development requires precise and timely information on those changes like reservoir
pressure change and fluid change. But distinguishing pressure changes from reservoir fluid changes
is difficult with conventional seismic time-lapse attributes. Some works on studying the sensitivities
and/or discrimination of these two changes have been presented by, e.g., Tura and Lumley (1999);
Landrø (2001); Landrø et al. (2003); Landrø and Duffaut (2004); Stovas and Landrø (2005); Kvam
and Landrø (2005). In this paper, we choose two parameters — relative changes in shear modulus
and velocity ratio Vp/Vs (Vp is the acoustic P velocity and Vs is the elastic shear velocity) which
may be useful for separating pressure changes from fluid changes. The reason for choosing these
two parameters is that Vp/Vs is sensitive to changes in fluid/water saturation, but insensitive to
changes in pressure; while, shear modulus is sensitive to changes in pore pressure but unaffected
by changes in fluid. These two parameters can help to indicate either a pressure or a fluid changed
in the reservoir. Hence, if these two parameters can be more accurately predicted/estimated using
the direct non-linear inversion method, it would be easier to accomplish this goal.

The direct non-linear inversion method is based on the inverse scattering series, and it uses the
measured scattered wave field, i.e., data D, to predict the earth property changes in space. Over
here, the baseline survey is considered as the reference wave field G0 in the inverse scattering series,
and the monitor survey as the actual wave field G. The initial reservoir condition is considered
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as the background and the reservoir property changes in TIME are related to the earth property
changes in SPACE in the inverse scattering series, and the monitor survey minus the baseline
survey is related to the scattered field. The relationship between the inverse scattering series and
the time-lapse seismic monitoring is illustrated in the following table:

Inverse scattering series Time-lapse seismic monitoring

Reference medium L0 Initial reservoir condition

Actual medium L Current reservoir condition

Earth property changes in space V = L0 − L Reservoir property changes in time

Reference wave field G0 Baseline survey

Actual wave field G Monitor survey

Scattered wave field D = G−G0 Monitor − Baseline

In the following sections, we show the numerical tests of the first and second order algorithms to
estimate shear modulus and Vp/Vs contrasts with only D̂PP (PP data). The applications are on the
core data (Gregory, 1976) and Heidrun well log data, respectively. The tests are similar to those
numerical tests described in our previous work (e.g., Zhang et al., 2005; Zhang and Weglein, 2005)
with reference medium over actual medium replaced by baseline over monitor; and the parameters
require modification from aγ , aρ and aµ to aR, aρ and aµ, where aR is the relative change in the

velocity ratio Vp/Vs. The detail derivations of writing a
(1)
R and a

(2)
R in terms of a

(1)
γ , a

(2)
γ , a

(1)
µ and

a
(2)
µ are in the Appendix.

2 Core data tests

In this section, we numerically test the direct non-linear inversion approach and compare the effects
of pressure and fluid changes on the elastic properties in the following two cases: (1) Fixing the fluid
as 100% water saturation, while the pressure changes from 1000 to 9000psi. The measurement at
pressure = 5000psi presents the baseline and the measurements at the other different pressures are
respectively considered as monitors (Gregory, 1976, Table 3). (2) Fixing the pressure at 5000psi,
while the fluid changes from 0 to 100 percent. The measurement at 100% saturation is the baseline
and the other cases with different water saturations are monitors, respectively (Gregory, 1976,
Table 4).

The numerical results are shown in the figures at the end of this paper. As illustrated in Figs. 1 and
2, when pressure changes, shear modulus has the most variation and Vp/Vs has the least variation;
while when only water saturation changes, shear modulus has the least variation and Vp/Vs has
bigger variation. So shear modulus is very sensitive to pressure changes while relatively not sensitive
to the fluid changes, and Vp/Vs is very sensitive to the fluid changes, but is relatively insensitive to
the pressure changes. These two parameters would be very useful in indicating/mapping pressure
and fluid changes. The P impedance has very big variation in both cases. So it is very sensitive to
each of the two kinds of changes and can’t discriminate fluid changes from pressure changes.

From Figs. 3 ∼ 6, we show the comparison of first and second order approximation of the relative
changes in shear modulus and Vp/Vs in the two cases as stated above. Among all of the examples
tested, because the contrast here is relatively small, both the first and second order approximation
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give good approximations, and the second order approximation does an ever better job, especially
for lager contrasts, the improvements are more obvious. Here, it is worth noting that the objective
of the direct non-linear inversion method (see, e.g., Weglein et al., 2003) is trying to predict more
reliable property changes for more complex, larger contrast targets where the error coming from
the linear approximation would be significant.

3 Heidrun well log data tests

In this section, well log data tests are performed on the Heidrun synthetic well log A-52 (Fig.
7). From the year 1986 to the year 2001, at the first layer of the reservoir, oil is replaced by
gas, and at the second layer, oil is replaced by water. Throughout the interval, the pore pressure
decreased. The baseline is the log data in 1986 and the monitor is the log data in 2001. In the
numerical tests, the inputs are analytically calculated reflection coefficients R1, R2, · · · , Ri, · · · and
the corresponding actual changes are, respectively, M1

B1
− 1, M2

B2
− 1, · · · , Mi

Bi
− 1, · · · (As shown in

Fig. 8).

From Fig. 9, we can see that, in the interval from about 3150 ∼ 3185m, oil goes to gas, and Vp/Vs

decreases; while in the interval from about 3200 ∼ 3220m, oil is replaced by water, and Vp/Vs

increases. Throughout this area, the pore pressure decreases a little bit, so the shear modulus
increase in a small amount. The numerical results agree with the given well log A-52, and also
indicate that the shear modulus is not sensitive to fluid changes since it has very small changes
throughout the interval because the pressure change is small. Figure 10 is the comparison of the
first order and second order approximation for the relative changes in the shear modulus. In this
case, the second order approximation provides significant improvements beyond the linear results.
It is much closer to the actual values. Figure 11 shows that both the first and second order
approximation give very good results for the relative changes in Vp/Vs. The error from the first
approximation is smaller and hence the first order approximation is more reliable compared with
shear modulus (Fig. 10). But when we zoom in on Fig. 11, say from about 3150 ∼ 3590m, the
results can be re-illustrated in Fig. 12, and we can see that the second order approximation does
give better results compared with the first order approximation.

4 Conclusion and further discussions

Numerical tests indicate that the second order approximation provides improvements in the earth
property predictions. The second order approximation is more helpful for predicting shear modulus.
The results are very encouraging. In the next step, we expect to apply this method to the synthetic
data and real seismic data.
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Appendix

The following is the derivation of expressing a
(1)
R and a

(2)
R in terms of a

(1)
γ , a

(2)
γ , a

(1)
µ and a

(2)
µ .

Since

aγ =
γ

γ0
− 1 =

ρα2

ρ0α2
0

− 1,

aµ =
µ

µ0
− 1 =

ρβ2

ρ0β2
0

− 1,

and

aR =
α/β

α0/β0
− 1,

then we have

(aR + 1)2 =
aγ + 1

aµ + 1
,

then
a2

R + 2aR + 1 = (aγ + 1)(1− aµ + a2
µ − · · · ),

where the series expansion is valid for |aµ| < 1.

Expanding the relative changes, we have

aγ = a(1)
γ + a(2)

γ + a(3)
γ + · · · ,

aµ = a(1)
µ + a(2)

µ + a(3)
µ + · · · ,

aR = a
(1)
R + a

(2)
R + a

(3)
R + · · · ,

then after substitutions, we obtain

a
(1)
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1

2

(
a(1)

γ − a(1)
µ

)
,

a
(2)
R =

1

2

(
a(2)

γ − a(2)
µ + a(1)2

µ − a(1)2

R − a(1)
γ a(1)

µ

)
.
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Theoretical developments in direct non-linear Q-compensation and a strategy
for achieving task-separated multiparameter inversion algorithms

Kristopher A. Innanen and Arthur B. Weglein

Abstract

We present developments in the theory and application of inverse scattering series (ISS)
methods for the direct non-linear processing of attenuated primaries. The motivation is to
provide differential capability in improving the resolution of seismic images within the direct,
non-linear inversion milieu, such that no medium information is required a priori. We begin
by discussing the linear inversion of a reflected seismic data set over a layered 2-parameter
viscoacoustic medium, and the basic means for construction of the complex frequency-dependent
linear scattering potential from the angle- and frequency-dependence of reflected data events.
We then show that the equations for coupled imaging and inversion of acoustic primaries (e.g.,
Innanen et al., 2004) may be extended to accommodate the viscoacoustic model, providing an
approximate solution of the non-linear 2-parameter direct inverse problem. We then use these
equations (which are themselves a potential stopping point) and a new strategy, in which the
data is processed linearly in one parameter and non-linearly in the other as the basis from which
to propose a set of task-separated Q-processing algorithms.

1 Introduction

In this paper we present a theory for linear and non-linear processing of primary reflections from
a seismic experiment over a one-dimensional visco-acoustic medium, i.e., a medium that has the
intrinsic capacity to dissipate wave energy as it propagates. We refer to such media as having
absorptive-dispersive (hereafter A-D) properties.

We fit this theory into the developing framework for “task-separated” processing based on the
inverse scattering series (ISS), which confers on its methods – when posed and investigated correctly
– the ability to proceed in the absence of accurate prior knowledge of medium parameters. As is
discussed in detail elsewhere (Weglein et al., 2002; Weglein et al., 2003; Shaw et al., 2004; Shaw,
2005; Innanen, 2003; Liu et al., 2005; Zhang and Weglein, 2005; Innanen, 2005) when applied
to problems of primary processing, as opposed to multiples (Weglein et al., 1997; Weglein et al.,
2003; Ramirez and Weglein, 2005; Nita and Weglein, 2006), a large number of ISS terms are often
necessary, and in some cases closed forms have been available in problems of limited dimensionality.
Some groundwork has been laid for the investigation of the non-linear ISS primary processing
capability for dissipative media (Innanen and Weglein, 2003; Innanen and Weglein, 2004; Innanen
and Weglein, 2005) and will be discussed further as needed here.

Some important issues are not addressed technically in this paper, primarily those centering on
strategies for dealing with the finite, discrete and inaccurate nature of a field data set, the first
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and third of which in particular will have consequences for a processing framework involving non-
linear methods and some flavor of Q compensation. The “aperture” problems of a seismic data
set when integral methods are applied is aggravated in non-linear schemes, and is of particular
interest in the case of lateral aperture of sources and receivers and the effective aperture in the
temporal frequency domain (i.e., the problem of band-limitation). “Data reconstruction”, the
handle given to a class of methods that address specifically the former of those two issues, is of
course a community-wide research effort whose success benefits all corners of seismic processing;
even a broad perspective on that literature is beyond the scope of this introduction and we will
not attempt it. The problem of band-limitation is of particular interest to a smaller community,
however there is a literature beyond our own that directly addresses the problem. “Band-limited
impedance inversion” (Wiggins and Miller, 1972; Walker and Ulrych, 1983; Oldenburg et al., 1983;
Ulrych, 1984; Oldenburg, 1984; Ulrych, 1989), in which a model with a full spectrum (including
DC component) is estimated from a bandlimited data set, is functionally identical to the problem
of computing, for ISS primary methods, the requisite linear input to higher order terms from a
bandlimited data set. Shaw (2005) and Innanen (2003) have discussed aspects of this relationship.
A broad result of these investigations is to recommend for any application of methods like those
described in this paper is to take the data as completely as is possible, especially in the regimes of
low temporal frequency. Beyond that, if it is necessary, we may employ such methods as described
above and import as they do low-level a priori assumptions into the methodology.

Beyond the utility of a method that estimates and compensates for attenuation without a prior
determination of Q, the novelty of the methods in this paper lies in: (i) it being the first in-
stance of a closed-form non-linear processing theory for a multi-parameter medium (Shaw et al.
(2004) and Innanen (2005) present closed-form non-linear processing theories for a single parameter,
while Zhang and Weglein (2005) present the second-order corrections available from two-parameter
acoustic model); (ii) it being an example of far more extensive separation of tasks than previously
considered, in particular, a mapping of fully attenuated-dispersed data to data that has had only
the dispersion compensated for is presented; and (iii) the suggestion, for a multi-parameter system,
that an “unprocessed data-to-processed data” mapping may be accomplished through non-linear
manipulation of one or more of the parameters, but only linear manipulation of others. Parameters
that are processed but which themselves remain linear in the data are ideally suited to be mapped
(often trivially) back to data space.

We begin with a description of the physical and experimental framework within which we will
form the processing theory, and the math-physics quantities, Green’s functions and scattering
integrals, that are the basis for the current research; following this we review and provide a new
analysis and comparison between various levels of complexity of the visco-acoustic linear problem.
Next the non-linear problem is tackled using the previously-developed viscous linear inverse and
commentary based on the non-linear imaging and inversion procedures previously developed for a
single parameter problem. Task-separation of the inversion equations is discussed and synthetic
examples are produced and analyzed.

1.1 Physical-experimental framework

In this research we proceed assuming certain kinds of Earth structure and make-up are in place
beneath certain kinds of reflection seismic experiments. Furthermore we develop methods for
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primary processing only that behave well if all other kinds of reflection event are absent; this
presupposes the successful application of methods to (1) estimate the source wavelet, (2) remove
source and receiver ghosts, (3) remove free-surface multiples, and (4) remove internal multiples.

Fig. 1a illustrates some of the key details of the wave experiment as we cast it in the theory to follow.
We consider a homogeneous whole-space (of water, say) as a reference medium in which resides
the source and receiver; all explicit wave quantities we utilize in this paper are associated with
propagation in this reference medium. All perturbations upon this reference are assumed to occur
at depths below the source and receiver, which for convenience we collocate in depth at zg = zs = 0.
We assume a line-source/line-receiver experiment expressed in the xg, ks domain, that is, with a
receiver point at the lateral coordinate xg, and source characterized by a suite of plane waves with
varying lateral wavenumber ks. Processing is conceived of here, in the standard terminology of the
seismic reflection processing, as occurring to a receiver-gather having been Fourier-transformed in
the lateral coordinate and in the time coordinate. We assume a medium that varies in the depth
direction only, and so a single receiver-record is sufficient to characterize the medium-wave field
response.

We specify to the simple case of a plane wave normally-incident upon a single interface at the outset
to provide a simple heuristic on the behavior of the linear component of the full inverse problem;
see Fig. 1b.

Figure 1: Two frameworks for modelling and processing data acquired over a 2-parameter layered visco-acoustic
medium. (a) An incident plane wave characterized by k = ω/c0 and lateral/depth wavenumbers ks/qs

propagates into the layered medium and is measured at the receiver point xg; (b) A plane wave at
normal incidence propagates downward and interacts with a single-interface.

1.2 Green’s functions for homogeneous constant-density acoustic media

We consider propagation in a homogeneous constant density acoustic medium characterized by
wavespeed c0 (no absorptive-dispersive effects are modelled in the reference medium); both 1D
normal incidence experiments (i.e., 1D medium, and horizontal plane source) and 1.5D experiments
(i.e., 1D medium, and line source) are considered. We utilize the following Green’s functions. A
1D normal incidence Green’s function for a source at zs and a receiver at zg for frequency ω = kc0
is

G0(zg|zs; k) =
eik|zg−zs|

i2k
. (1)
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A 2D Green’s function for a receiver at xg, zg = 0 and a source at x′, z′ is

G0(xg, 0|x′, z′; k) =
1

2π

∫ ∞

−∞
dk′eik

′(xg−x′) e
iq′z′

i2q′
, (2)

where q′2 = k2 − k′2; more generally, a 2D Green’s function for a receiver at x′, z′ and a source at
x′′, z′′ is

G0(x
′, z′|x′′, z′′; k) =

1

2π

∫ ∞

−∞
dk′eik

′(x′−x′′) e
iq′|z′−z′′|

i2q′
. (3)

Finally, a 2D Green’s function for a receiver at x′′, z′′, and a source at lateral wavenumber ks and
source depth zs = 0 is

G0(x
′′, z′′|ks, 0; k) = eiksx′ eiqsz′′

i2qs
, (4)

where q2s = k2 − k2
s . Eqns. (1)–(4) represent the only explicit propagation relationships used in

the developments to follow; all account of propagation outside of the known homogeneous refer-
ence medium will be taken by high-order non-linear interactions of these acoustic, non-attenuating
Green’s functions with the requisite perturbation operator.

1.3 Scattering in an absorptive-dispersive medium

The inverse methods (and the forward methods they are based upon) come about from a specific
characterization of the field variables and coefficients of two partial differential equations describing
waves in a reference and in an actual medium. The basic equation governing the propagation we
consider is [

∇2 +K2
]
G(x′, z′|xs, zs,K) = −δ(x′ − xs, z

′ − zs), (5)

in which differences arise from the definitions of K for the two media. We consider the reference
medium to be a homogeneous constant density acoustic medium, characterized by wavespeed c0,
in which case K2 ≡ k2 = ω2/c20. We consider the actual medium to correspond to one that has
both variable wavespeed and variable Q, the latter being a parameter that governs absorption and
dispersion, in which case:

K2 ≡ ω2

c2(z)

[
1 + 2

F (k)

Q(z)
,

]
(6)

is an appropriate form provided terms quadratic and higher in F (k)
Q(z) are small. If A-D models similar

to those discussed by Aki and Richards (2002), due to, for instance, Futterman (1962), and similar
at seismic frequencies to that of Kjartansson (1979) are utilized, then the function F (k) is defined
to be

F (k) =
i

2
− 1

π
ln

(
k

k0

)
, (7)

where k0 is a reference quantity k0 = ωmax/c0, in which ωmax is often chosen to be the largest
frequency in the experiment. Notice that the function of F (k) is to produce both imaginary and
frequency dependent components in the propagation wavenumber K. Provided we assume a model-
type for A-D behavior, this function is generally assumed to be known; we assume that here.
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This form for propagation leads to altered descriptions of medium impedance, and hence reflection
and transmission coefficients, the former of which will be of some importance. A reflection coefficient
for an acoustic-viscoacoustic interface such as that illustrated in Fig. 1b is

R(k) =
k −K
k +K

=
1− c0

c1

(
1 + F (k)

Q1

)

1 + c0
c1

(
1 + F (k)

Q1

) ,
(8)

and hence, like the propagation wavenumber, is both complex and frequency-dependent by virtue
of the A-D behavior of the actual medium.

Expressing eqn. (5) in operator form for both the reference and actual cases respectively, we
straightforwardly form the standard quantities of scattering theoretic modelling and inversion – two
wave equations (reference and actual), and the difference between the associated wave operators
and Green’s operators; respectively

L0G0 = −I, LG = −I,

V = L− L0, ψ = G−G0.
(9)

These operators may be related by the identity referred to in scattering theory as the Lippmann-
Schwinger, or Scattering equation, which further may be expanded in series to form the Born series,
i.e.,

ψ = G0VG,

= G0VG0 + G0VG0VG0 + G0VG0VG0VG0 + ...
(10)

The inverse scattering series is a series expansion of the scattering potential/perturbation operator
V, in which the n’th term is considered to be “n’th order in measurements of the scattered field”.
The order-by-order prescription for computation of V is attained by [1] substituting the series form
for V into eqn. (10), and [2] restricting the wave field quantities to a measurement surface. We
proceed assuming [2]. Substituting V = V1 + V2 + V3 + ... into the Born series and equating like
orders gives

ψ = G0V1G0,

0 = G0V2G0 + G0V1G0V1G0,

0 = G0V3G0 + G0V1G0V2G0 + G0V2G0V1G0

+ G0V1G0V1G0V1G0,

(11)

etc. For the two wave equations we have fixed upon in this research, we may write down specific
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forms for the scattering quantity V:

V = L− L0

=

[
∇2 +

(
ω

c0

)2
]
−
[
∇2 +K2

]

= k2 −K2

=

(
ω

c0

)2

− ω2

c2(~x)

[
1 + 2

F (k)

Q(~x)

]

≈
(
ω

c0

)2

[α(~x)− 2F (k)β(~x)] .

(12)

The last line is the result of expressing the coefficients of the actual wave equation in terms of
perturbations on the coefficients on the reference wave equation:

α(~x) = 1− c20
c2(~x)

,

β(~x) =
1

Q(~x)
,

(13)

and the assumption that αβ is small. This form may be substituted into the forward scattering
series in eqn. (10) to approximate to any level of accuracy an absorptive-dispersive wave field in
terms of non-linear interactions of wave fields that are purely acoustic (Innanen, 2003; Innanen and
Weglein, 2003). The inverse scattering series for such a two-parameter acoustic and absorptive-
dispersive problem then arises by setting

V1 =

(
ω

c0

)2

[α1(~x)− 2F (k)β1(~x)] ,

V2 =

(
ω

c0

)2

[α2(~x)− 2F (k)β2(~x)] ,

(14)

etc., and solving directly for αn and βn in terms of the measured data. We proceed in this analysis
as is becoming standard for task-separated/velocity independent non-linear primary processing,
that is by solving carefully the linear problem and casting the higher order terms as operations
acting on this preliminary output.

2 Linear processing of primaries over a multiparameter c/Q medium

Some effort has been expended in casting and determining the nature of the linear 2-parameter
absorptive-dispersive inverse problem given a layered medium and acoustic reference (Innanen,
2003; Innanen and Weglein, 2004). The resulting methodology resembles (1) the acoustic theories
of Raz (1981) and Clayton and Stolt (1981), in its strategy for handling multiple parameters, and
(2) the work of Carrion and VerWest (1987) in its devising and solution for a viscous scattering
potential. The present theory differs from the latter work in that it is not a single-parameter profile
inversion that assumes a prior knowledge of the medium wavespeed, but rather a formalism in which
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both parameter profiles are concurrently estimated; nevertheless in many aspects of the detailed
handling of the scattering potential the two linear theories bear a resemblance. Most importantly,
we do, to some extent, come here to bury linear Q inversion and not to praise it; the failure of
the linear approximation for reflectors embedded in the viscous part of the medium is the primary
motivation for a view to extend to non-linear methods. The goal of this section is to review the
linear theory and illustrate its basic behavior as a prelude to discussing the nonlinear problem and
its manipulation for processing attenuated primaries.

2.1 For a normal incidence plane source over a single interface

Here we carry out the linear A-D inversion for the simplest possible case, a normal incident experi-
ment over a single viscous interface; in spite of its simplicity, it will be seen to illustrate conceptually
and mechanically very clearly the process of extracting multi-parameter information from an A-D
data set. To explore an experiment and linear inverse procedure like that illustrated in Fig. 1b, we
relate the linear component of the perturbation operator (the first line of eqn. 14) to the measured
data via the first line of eqn. (11), allowing the now unknown parameters α1 and β1 to vary in
depth z only:

D(zg = 0|zs = 0, k) =

∫ ∞

−∞
dz′G0(0|z′; k)k2

[
α1(z

′)− 2F (k)β1(z
′)
]
ψ0(z

′|0; k)

= −1

2
ik

∫ ∞

−∞
dz′ei2kz′

[
α1(z

′)− 2F (k)β1(z
′)
]

= − i2k
4

[α1(−2k)− 2F (k)β1(−2k)] ,

(15)

where we have impelled the data to be “spike-like” rather than “step-like” by using an incident
plane wave, ψ0(z

′|0; k) = exp(ikz′), rather than an incident Green’s function. This is not a well-
posed problem for two parameters with arbitrary spectra in the depth-wavenumber; however if we
further impose a single interface (as in Fig. 1b) at depth z1 on the problem, then these spectra
and that of the resulting data have straightforward analytic forms:

D(k) = −1

4
[α1(−2k)− 2F (k)β1(−2k)]

R(k)ei2kz1 = − i2k
4

[
α1
ei2kz1

i2k
− 2F (k)β1

ei2kz1

i2k

]

−4R(k) = α1 − 2F (k)β1.

(16)

The problem, which now amounts to solving for two scalar quantities, the interface linear perturba-
tion values for c and Q, is then well-posed and in principle requires only two input frequencies in the
data, or measured reflection coefficient R(k) = R(f). With two input frequencies two independent
linear equations are produced, and the unknowns may be solved for as

α1(f1, f2) = 4
R(f2)F (f1)−R(f1)F (f2)

F (f1)− F (f2)
,

β1(f1, f2) = 2
R(f2)−R(f1)

F (f1)− F (f2)
.

(17)
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This expression speaks to the manner in which a linear inverse scattering formalism demands that
A-D wave field behavior be detectable in the data. Clearly the dispersion (that generates frequency-
dependence in the reflection coefficient) is paramount. If the variability of the reflection coefficient
from frequency to frequency is not detectable in the data, the linear Q perturbation parameter
β1 will be zero. (Furthermore, the linear c perturbation parameter will lapse to 4R, which is the
expected linear inverse result for the single parameter wavespeed problem at normal incidence.)
Although it is a simple, and perhaps none-to-striking result, the form expressed in equation (17) will
recur in all forthcoming instances of A-D inversion and processing, both as the experiment/medium
become more complicated, and as we move from linear to non-linear processing.

2.2 For a line source over a layered medium

In the previous section, an ill-posedness in the two-parameter normal incidence problem was over-
come by assuming a single interface medium structure and analytic form for the data. Ideally the
problem should be cast such that an arbitrary profile of both β1(z) and α1(z) is obtainable. This
turns out to be possible in a pre-stack milieu. The linear relationship for the two parameter, depth
varying problem with source and receiver depths fixed at z = 0 is

D(xg|ks; k) =

∫ ∞

−∞
dz′
∫ ∞

−∞
dx′G0(xg, 0|x,′ z′; k)k2

[
α1(z

′)− 2F (k)β1(z
′)
]
G0(x

′, z′|ks, 0; k)

=

∫ ∞

−∞
dz′
∫ ∞

−∞
dx′

[
1

2π

∫ ∞

−∞
dk′eik

′(xg−x′) e
iq′z′

i2q′

]
k2
[
α1(z

′)− 2F (k)β1(z
′)
]
[
eiksx′ eiqsz′

i2qs

]

=
k2

2π(i2qs)

∫ ∞

−∞
dz′
∫ ∞

−∞
dk′

ei(q
′+qs)z′

i2q′
eik

′xg
[
α1(z

′)− 2F (k)β1(z
′)
]
δ(ks − k′)

= − eiksxg

4 cos2 θ

∫ ∞

−∞
dz′ei2qsz′

[
α1(z

′)− 2F (k)β1(z
′)
]
.

(18)

The angle of the incident plane wave (θ) arises, in the last line, from the plane wave geometry illus-
trated in Fig. 1a. The depth integral in equation (18) is a Fourier transform, leading to an equation
relating the temporal frequency components of the data to the spatial frequency components of the
linear part of the model; the model reconstruction proceeds as such. To see specifically how the
presence of offset, or multiple incidence angles θ, renders the two-parameter problem well-posed,
we carry out the Fourier transform, and replace (i) the k dependence in the A-D function F (k),
and (ii) the ks, k dependence of the data, by again looking to the plane wave geometry of Fig. 1a.
We then have

D(xg|qs; θ) = − eiksxg

4 cos2 θ
[α1(−2qs)− 2F (θ, qs)β1(−2qs)] . (19)

The situation has reverted to something similar to the 1D normal incidence single interface problem
in eqn. (15), in other words for any member qs of the model spectra we may solve for α1(−2qs)
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and β1(−2qs) given the data at at least two angles of incidence θ1 and θ2. From

D(xg|qs; θ1) = − eiksxg

4 cos2 θ1
[α1(−2qs)− 2F (θ1, qs)β1(−2qs)] ,

D(xg|qs; θ2) = − eiksxg

4 cos2 θ2
[α1(−2qs)− 2F (θ2, qs)β1(−2qs)] ,

(20)

we may solve for the two linear components as

α1(−2qs; θ1, θ2) = 4e−iksxg
D(xg|qs; θ2) cos2 θ2F (θ1, qs)−D(xg|qs; θ1) cos2 θ1F (θ2, qs)

F (θ1, qs)− F (θ2, qs)

β1(−2qs; θ1, θ2) = 2e−iksxg
D(xg|qs; θ2) cos2 θ2 −D(xg|qs; θ1) cos2 θ1

F (θ1, qs)− F (θ2, qs)
.

(21)

Notice that the form is in essence the same as that of the simpler problem. With regard to the
Q perturbation β1, the data is corrected, by cos2 θ, for its expected acoustic angle dependence,
and the difference is taken at the two angles. If a difference still exists after this correction, that
difference is attributed to dispersion and used to estimate β1. If there is no difference, (1) β1 will
clearly be zero, and (2) the factors F in the α1 expression will cancel such that it lapses to its
expected single-parameter acoustic value.

This form, which is sufficiently general (in comparison with that of section 2.1) to be considered
an inverse algorithm, has strengths and weaknesses. Like other linear multi-dimensional methods
(Clayton and Stolt, 1981; Raz, 1981) it generalizes to multiple dimensions in short order, given
multiple receiver gathers. Furthermore, given more than two angles of incidence the problem
is over-determined, allowing a weighted estimation of the two parameters to take place, via, for
instance, a least-squares scheme. However, it is well established that the error in this linear inverse
method is increased for reflectors embedded in perturbed regions of the medium, that is, where the
difference between the reference and actual medium above the structure of interest is large. This
error (attributable to the cumulative transmission coefficient down to the structure of interest) is
strongly aggravated in an A-D medium, in which attenuation and dispersion joins transmission in
decaying amplitudes. In the next section the development of methods to overcome some of these
issues is addressed.

3 Non-linear processing of primaries over a multiparameter medium

Innanen and Weglein (2004) report on encouraging synthetic results being obtained with the linear
inverse for a single interface overlain by the reference medium – that is, provided the overburden is
known, the linear inverse produces results that are more than acceptable. However, for a medium
in which recorded events have propagated through unknown A-D structures, i.e., those that are not
included in the reference medium, and hence are distorted and smoothed, linear results are highly
degraded. The usual choice is at hand: spend more effort to characterize the medium structure
and include it in the reference medium, or face the non-linearity of the current problem. Since we
are motivated to create methods that act in the absence of detailed, or in any case adequate, prior
knowledge of the medium structure, we proceed in the latter vein.
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To do this we will express the higher-order terms similarly to the first order term as in the previous
section, but retain only those terms and term components that are adjudged to be concerned with
the processing and inversion of primaries. These terms have been derived and discussed as such
in several of the previously-referenced papers on imaging and inversion with the inverse scattering
series by Weglein et al. (2002), Weglein et al. (2003), Shaw et al. (2004), Liu et al. (2005), as
well as in several theses (Innanen, 2003; Shaw, 2005). Innanen (2005) discusses the symmetry of a
forward/inverse scattering subseries pair, the former of which is argued and demonstrated to accu-
rately approximate primaries in high-contrast and high-variability 1.5D media given a homogeneous
acoustic reference; the symmetry suggests further that these types of series term work to process
primaries under conditions of highly-simplified reference media. In the remainder of this paper
we proceed on the assumption that certain identifiable and straightforwardly expressible inverse
scattering series term behave as such.

3.1 A series expression for processing primaries over a c/Q medium

The formalism of eqns. (11) translate to explicit forms for second and higher order in much the
same way as occurs in the linear term. Let us begin by considering the second order relationship:

G0V2G0 = −G0V1G0V1G0. (22)

Making use of the forms for the Green’s operators and perturbation operator components defined
in the first section, the LHS of this second-order relation behaves in exactly the same way as the
RHS of the linear expression does, to wit:

LHS2 = − eiksxg

4 cos2 θ

∫ ∞

−∞
dz′ei2qsz′

[
α2(z

′)− 2F (θ, qs)β2(z
′)
]
. (23)

The RHS begins to show evidence of the increasing levels of complexity of the high orders:

RHS2 =−
∫ ∞

−∞
dx′
∫ ∞

−∞
dz′G0(xg|x′, z′; k)k2

[
α1(z

′)− 2F (θ, qs)β1(z
′)
]

×
∫ ∞

−∞
dx′′

∫ ∞

−∞
dz′′G0(x

′, z′|x′′, z′′; k)k2
[
α1(z

′′)− 2F (θ, qs)β1(z
′′)
]
G0(x

′′, z′′|ks; k).

(24)

Making substitutions of the Green’s functions given in the first section, simplifications arise due to
the lack of dependence of the perturbations on the lateral coordinate, resulting in

RHS2 =− eiksxg

16 cos4 θ

∫ ∞

−∞
dz′(i2qs)e

iqsz′
[
α1(z

′)− 2F (θ, qs)β1(z
′)
]

×
∫ ∞

−∞
dz′′eiqs|z′−z′′|

[
α1(z

′′)− 2F (θ, qs)β1(z
′′)
]
eiqsz′′ ,

(25)

or

RHS2 =− eiksxg

8 cos4 θ

∫ ∞

−∞
dz′ei2qsz′

{
(i2qs)

[
α1(z

′)− 2F (θ, qs)β1(z
′)
] ∫ z′

0
dz′′

[
α1(z

′′)− 2F (θ, qs)β1(z
′′)
]
}
.

(26)
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This second-order relationship, like the first-order relationship, works only on primaries, since it
takes at least three scattering interactions to begin to process (or create, in the forward scattering
series) multiples (e.g., Matson, 1996; Weglein et al., 2003). At third-order and higher, it is necessary
in developing primary-processing methods to invoke the strategy of task-separation, and identify
and isolate terms that, to an acceptable level of approximation, work to process primaries as if
multiples were absent. Indeed, it will therefore be necessary as a preliminary processing step to
attenuate multiples from the data to be treated by here-generated algorithms.

To collect and use only such primary-processing terms, we find it convenient in this particular
two-parameter case to follow the development of the single-parameter processing equations of
Innanen (2003), Innanen and Weglein (2003) and Innanen (2005). (This is as opposed to the
single-parameter Q processing results described by Innanen and Weglein (2005), in which it was
convenient to follow the task-separated imaging equations of Weglein et al. (2002), Shaw et al.
(2004), and Shaw (2005).) Doing so results in a relationship between the inverse scattering series
equations’ LHS and RHS at (n+ 1)’th order, in which the RHS retains only the portion of the full
inverse scattering series terms that are deemed to process primaries:

LHSn+1 = − eiksxg

4 cos2 θ

∫ ∞

−∞
dz′ei2qsz′

[
αn+1(z

′)− 2F (θ, qs)βn+1(z
′)
]
, (27)

and

RHSn+1 =− eiksxg

(−2)nn! cos2n θ

×
∫ ∞

−∞
dz′ei2qsz′

{
(i2qs)

n
[
α1(z

′)− 2F (θ, qs)β1(z
′)
]
(∫ z′

0
dz′′

[
α1(z

′′)− 2F (θ, qs)β1(z
′′)
]
)n}

.

(28)

Equations (27) and (28) may be summed and equated, i.e.,

∞∑

n=0

LHSn+1 =
∞∑

n=0

RHSn+1, (29)

or, explicitly,

∞∑

n=0

∫ ∞

−∞
dz′ei2qsz′

[
αn+1(z

′)− 2F (θ, qs)βn+1(z
′)
]

=
∞∑

n=0

(−1/2)n

n! cos2n θ

∫ ∞

−∞
dz′ei2qsz′

{
(i2qs)

n
[
α1(z

′)− 2F (θ, qs)β1(z
′)
]
(∫ z′

0
dz′′

[
α1(z

′′)− 2F (θ, qs)β1(z
′′)
]
)n}

,

(30)

such that, defining the summed portions of the LHS to be

αP ≡
∞∑

n=0

αn+1, and βP ≡
∞∑

n=0

βn+1,
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portions of the model perturbations that are, in a specifically chosen way, non-linear in the data,
we have:
∫ ∞

−∞
dz′ei2qsz′

[
αP (z′)− 2F (θ, qs)βP (z′)

]

=
∞∑

n=0

(−1/2)n

n! cos2n θ

∫ ∞

−∞
dz′ei2qsz′

{
(i2qs)

n
[
α1(z

′)− 2F (θ, qs)β1(z
′)
]
(∫ z′

0
dz′′

[
α1(z

′′)− 2F (θ, qs)β1(z
′′)
]
)n}

.

(31)

Two incidence angles, and two versions of eqn. (31) that involve α1 and β1 constructed from data at
those incidence angles, can again lead to a well-posed set of expressions for the high order quantities
αP and βP , which are by assumption accurate approximations of the actual perturbations α and
β even for a homogeneous and inaccurate reference medium. We defer this activity to the next
section, in which a more compact and simply computable form of the RHS is devised. However,
since this computable and elegant form is the only part of this development that entirely relies on
the assumption of a layered medium, we hardly advocate ignoring series forms similar to equation
(31). At present it seems likely that they will, by necessity, be used in an extension to fully 2D and
3D frameworks.

3.2 A closed-form expression for processing primaries over a c/Q medium

We have utilized the same patterns in the inverse scattering series that have elsewhere been de-
termined to approximately solve the full imaging-inversion problem for primaries, now in a multi-
parameter A-D milieu. In this section we use a simple argument to express that series in closed
form, thus in a single computation produce the numerical/analytical effect of having summed a
potentially large number of terms in equation (31). Starting at that equation, we have

∫ ∞

−∞
dz′ei2qsz′

[
αP (z′)− 2F (θ, qs)βP (z′)

]

=

∫ ∞

−∞
dz′ei2qsz′

∞∑

n=0

1

n!

{
(−1/2)

cos2 θ
(i2qs)

∫ z′

0
dz′′

[
α1(z

′′)− 2F (θ, qs)β1(z
′′)
]
}n [

α1(z
′)− 2F (θ, qs)β1(z

′)
]

=

∫ ∞

−∞
dz′e

−i2qs

n
z′+ 1

2cos2θ

R z′

0 dz′′[α1(z′′)−2F (θ,qs)β1(z′′)]
o [
α1(z

′)− 2F (θ, qs)β1(z
′)
]
.

(32)

Let us render this closed form more compact by defining:

∆(qs, θ) ≡
∫ ∞

−∞
dz′e

−i2qs

n
z′+ 1

2cos2θ

R z′

0 dz′′[α1(z′′)−2F (θ,qs)β1(z′′)]
o [
α1(z

′)− 2F (θ, qs)β1(z
′)
]
. (33)

Now, performing the Fourier transform on the left-hand side, and utilizing equation (33), equation
(32) can be expressed twice, once for each of two input incident angles θ1 and θ2:

αP (−2qs)− 2F (θ1, qs)βP (−2qs) = ∆(qs, θ1)

αP (−2qs)− 2F (θ2, qs)βP (−2qs) = ∆(qs, θ2),
(34)
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in which case a solution exists for these non-linear processed quantities that is remarkably similar
to both the prestack and normal-incidence linear solutions:

αP (−2qs; θ1, θ2) =
∆(qs, θ1)F (θ2, qs)−∆(qs, θ2)F (θ1, qs)

F (θ1, qs)− F (θ2, qs)

βP (−2qs; θ1, θ2) =
1

2

∆(qs, θ1)−∆(qs, θ2)

F (θ1, qs)− F (θ2, qs)
.

(35)

Eqns. (33) and (49) form the basis for the herein-presented theory for non-linear processing of
primaries above an unknown and undetermined layered c/Q medium. Comparing equation (49) to
equations (21) and (17) it is clear that, again, in a two parameter A-D system, if solved-for in angle-
pairs, exactly the same form of data-interrogation appears. The variability of the quantity ∆(qs, θ)
is measured, through differencing over angle, to estimate βP ; if there is no angle dependence of this
quantity the Q perturbation construction is zero, i.e., the same interrogation technique used in the
linear two-parameter case, now with the quantity ∆ (which is a non-linear quantity that works to
take account for transmission through the unknown A-D overburden) in place of the raw data.

4 Task-separation I: absorption-dispersion compensation without a Q-estimate

Eqns. (33) and (49) are the basis for non-linear estimation of the actual c/Q medium in terms of
only a reflected data set over a layered medium, and a homogeneous reference wavespeed model
(characterized by c0) that the actual Earth necessarily obeys only at and above the source and
receiver. This is at the outset already a task-separated processing regimen, in the sense of Weglein
et al. (2003), in that only primaries and not multiples are meant to be processed with it; however,
within these relationships lies an opportunity for much more focused task-separation. We explore
that opportunity in this section.

A convenience of form in the key quantity of these equations, which we have referred to as ∆(qs, θ),
allows both (1) the activity of the non-linear operations and (2) the part of the data/linear models
that are operated upon, to be isolated from one another. Let us take a closer look at ∆(qs, θ), and
make several new definitions. Writing the original ∆(qs, θ) as

∆(qs, θ) =

∫ ∞

−∞
dz′e−i2qs[z′+Zα(θ,z′)+Zβ(qs,θ,z′)] [α1(z

′)− 2F (θ, qs)β1(z
′)
]
, (36)

we consider the two variants

∆(α)(qs, θ) ≡
∫ ∞

−∞
dz′e−i2qs[z′+Zα(θ,z′)]

[
α1(z

′)− 2F (θ, qs)β1(z
′)
]
,

∆(β)(qs, θ) ≡
∫ ∞

−∞
dz′e−i2qs[z′+Zβ(qs,θ,z′)] [α1(z

′)− 2F (θ, qs)β1(z
′)
]
,

(37)

where

Zα(θ, z′) ≡ − 1

2 cos2 θ

∫ z′

0
α1(z

′′)dz′′,

Zβ(qs, θ, z
′) ≡ F (qs, θ)

cos2 θ

∫ z′

0
β1(z

′′)dz′′.

(38)
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The definitions are relatively straightforward: the terms in the argument of the exponential are in
dimensions of depth but are sensitive to size and duration of the linear estimates α1 and β1 down to
the output point of the integration variable z′, as well as the current angle of incidence and reference
depth wavenumber. This simply emphasizes the fact that the portion of the operator embodied in
∆(qs, θ), i.e., the Fourier-like transform being enacted upon α1 and β1, is clearly concerned with
the impact of β1 on the data, and the other is clearly concerned with the impact of α1 on the
data. Since in the absence of an A-D element in the data (in which case β1 = 0) these equations
reduce to the single-parameter acoustic case involving α1, αP and α, it is reasonable to ascribe to
the Zα component of the operator the “task” of undoing the effects of sustained perturbations on
the P-wave velocity of the medium. It follows then that we ascribe to the Zβ component of the
operator the task of undoing the effects of sustained perturbations on the attenuation parameter of
the medium – Q processing. The similarity of this operator to that studied in isolation by Innanen
and Weglein (2005) is testament to this assumption if that is needed. Hence to carry out one
of these joint tasks of c/Q processing and not the other is to set one or other of these operator
components to unity, or depth-like quantities to zero. This is the meaning of the variant quantities
in equation (37).

The sum total of the non-linear activity of the data in these inversion equations (which represent a
portion of the full inversion capability of the inverse scattering series) is to generate the operators
described above. Hence, to set the operator component associated with one of the parameters
to zero is to negate the accumulated non-linearity of the series in that parameter – to process
linearly in that parameter. Doing so, furthermore, clearly means that we may either (1) form an
accurate depth image without knowing or determining the actual velocity model of the medium
and leave all attenuation aspects intact and unchanged, or (2) perform Q compensation without
knowing or determining the actual Q model of the medium and leave all reflector locations at their
linear depths and amplitudes. Mapping this latter quantity back (trivially) to data space with the
reference Green’s functions will create a data set corresponding to the changes in P-wave velocity
and contain no imprint of Q – a processing regimen with a strong flavor of Q-compensation.

Remaining selectively linear in one or more parameters in a multiparameter non-linear direct prob-
lem, in other words, makes available far more focused opportunities for task-separation.

The spectrum of the linearly-imaged, Q-compensated wavespeed perturbation, which we will call
αQ(z), is computed using a variant of the full processing equations (33) and (49), namely:

αQ(−2qs; θ1, θ2) =
∆(β)(qs, θ1)F (θ2, qs)−∆(β)(qs, θ2)F (θ1, qs)

F (θ1, qs)− F (θ2, qs)
(39)

for two input angles of incidence, at which point linear single parameter acoustic data equations
may be used with this output to estimate the associated data set. Put into a single algorithm,
the Q compensated data set DA-D, in terms of the linear parameters α1 and β1 computed at two
incidence angles, is

DA-D(xg, qs, θ; θ1, θ2) = − eiksxg

4 cos2 θ
αQ(−2qs; θ1, θ2)

= − eiksxg

4 cos2 θ

∆(β)(qs, θ1)F (θ2, qs)−∆(β)(qs, θ2)F (θ1, qs)

F (θ1, qs)− F (θ2, qs)
,

(40)
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where

∆(β)(qs, θ) =

∫ ∞

−∞
dz′e−i2qs[z′+Zβ(qs,θ,z′)] [α1(z

′)− 2F (θ, qs)β1(z
′)
]
,

Zβ(qs, θ, z) =
F (qs, θ)

cos2 θ

∫ z

0
β1(z

′)dz′,

F (θ, qs) =
i

2
− 1

π
ln

(
qs

k0 cos θ

)
.

(41)

4.1 Non-linear correction of dispersion

A potentially valuable separability of the non-linear inversion tasks associated with primaries above
an A-D medium is available and visible in equations (40) and (41). The additive nature of the linear
and full perturbations is such that either the Q-based operator or the c-based operator (those acting
to correct attenuation and mis-location issues respectively) may be individually enacted upon either
the Q-based input or the c-based input (i.e., β1 or α1 respectively). In equations (40) and (41)
that separability is used to propose a means to compute an equivalent un-attenuated data set; here
we find that, due to the – again – additive nature of the problem, a further task separability is
available, similar to one that is often accomplished in standard Q-based processing.

The operator

e−i2qs[z′+Zβ(qs,θ,z′)] (42)

gains the wherewithal to both correct absorptive and dispersive effects through the appearance in
Zβ(qs, θ, z

′) of the Q model-type function

F (θ, qs) =
i

2
− 1

π
ln

(
qs

k0 cos θ

)
. (43)

This function renders and separates the production of absorptive and dispersive effects; suppressing
i/2 for instance would leave a function that concerned itself solely with dispersion effects:

FD(θ, qs) = − 1

π
ln

(
qs

k0 cos θ

)
. (44)

In the presence of noisy data often the removal of the dispersion is the only level of Q compensation
attempted; in quarters of the geophysical community this is considered to be in any case the Q
problem of importance, there being other means to “compensate for high-frequency loss” of late-
arriving signals (Hargreaves and Calvert, 1991). Forming an operator based on FD of the form

e
−i2qs

h
z′+Zβ

D(qs,θ,z′)
i

, (45)

where

Zβ
D(qs, θ, z) =

FD(qs, θ)

cos2 θ

∫ z

0
β1(z

′)dz′, (46)

we may re-form the equations of the full A-D problem to administer only to the dispersive compo-
nent:

DD(xg, qs, θ; θ1, θ2) = − eiksxg

4 cos2 θ

∆
(β)
D (qs, θ1)F (θ2, qs)−∆

(β)
D (qs, θ2)F (θ1, qs)

F (θ1, qs)− F (θ2, qs)
, (47)
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where

∆
(β)
D (qs, θ) =

∫ ∞

−∞
dz′e

−i2qs

h
z′+Zβ

D(qs,θ,z′)
i [
α1(z

′)− 2F (θ, qs)β1(z
′)
]
,

Zβ
D(qs, θ, z) =

FD(qs, θ)

cos2 θ

∫ z

0
β1(z

′)dz′,

F (θ, qs) =
i

2
− 1

π
ln

(
qs

k0 cos θ

)
,

FD(θ, qs) = − 1

π
ln

(
qs

k0 cos θ

)
.

(48)

Notice that the model-type function F is only changed to FD when it appears in the operator.
As a weight “explaining” the angle/frequency dependence of reflection coefficients, it is left in its
original fully complex and frequency-dependent form.

5 Task-separation II: acoustic velocity processing with visco-acoustic data

The approach used in the previous section, in which a deliberate choice was made to “process”
the data non-linearly in one parameter (Q) and linearly in the other (c), left us with the ability
in principle to estimate an equivalent non-attenuated data set. The data set is, by definition, that
which is linear in α1 alone. The practical upshot is a Q-compensation scheme. In this section we
mention (briefly) that the mirror image of this process, in which we choose to process the data
non-linearly in the wavespeed parameter, could also be of interest.

We take as our basic equations

αAc(−2qs; θ1, θ2) =
∆(α)(qs, θ1)F (θ2, qs)−∆(α)(qs, θ2)F (θ1, qs)

F (θ1, qs)− F (θ2, qs)

βAc(−2qs; θ1, θ2) =
1

2

∆(α)(qs, θ1)−∆(α)(qs, θ2)

F (θ1, qs)− F (θ2, qs)
.

(49)

which differ from those of eqn. (49) in their use of the ∆(α) defined in eqn. (37). The point
is that both parameters – in particular the velocity parameter α has been processed non-linearly
in velocity only. In other words the non-linear problem of location has been dealt with, but the
non-linear problem of attenuation has not. And, as a result, no ill-conditioned problem has been
attempted.

This instance of the multiparameter task-separated idea, in other words, permits attenuation to be
accounted-for but not used. It is worth contrasting this with a problem in which the same data (let
us assume a data set that has non-negligible A-D effects in the phase and amplitude of the events)
is being processed assuming they are due to velocity contrasts only. The latter incorrectly explains
amplitude and phase as wavespeed alterations and mislocates reflectors∗. In this case we do not
process the Q aspects of the data non-linearly, but we correctly incorporate them, such that the
now well-posed velocity processing regimen can move forward.

∗A simple “reductio” argument will serve to explain. We could imagine a medium consisting of only Q contrasts,
so that the reflected data (i.e., in which Q-contrasts alone produce reflections, a la Kjartansson (1979)) is correctly
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6 Towards numerical examples: a layered viscoacoustic model of primaries

At present we are working towards a suite of numerical examples to illustrate the behaviour of
these multi-parameter task-separated processing strategies. To create synthetic data suitable for
testing of this theory and algorithm, we consider a stratified medium involving layers of constant
wavespeed and Q. The data may therefore be expressed analytically in the frequency domain, and
numerically transformed into the space-time domain. Figures 2–6 illustrate.

Figure 2: A layered 2-parameter viscoacoustic medium model.

7 Conclusions

The issue of resolution of seismic images is impacted by a potentially large set of phenomena which
act on a pulse during its propagation history in the unknown medium, referred to collectively
as “attenuation”. Included within this blanket category are the so-called “intrinsic attenuation”
effects, those which can be modelled to some adequate level with a viscoelastic continuum model.
A matter of ongoing interest are the obstacles faced by, and opportunities afforded to, direct non-
linear primary processing algorithms when the recorded data contain a non-negligible degree of
such attenuation.

The most recent previous discussions on the subject (Innanen and Weglein, 2005) have discerned
(1) an imaging-analogous set of inverse scattering series terms whose purpose appears from analytic
study to be geared towards reinstatement of attenuated high frequencies, and (2) the salutary effect
of this subseries on a specially contrived attenuated synthetic data set.

The current effort has involved moving toward a theory that permits concurrent contrasts in two
parameters, and has viewed this extension as an opportunity to explore further the changes to

imaged with the reference wavespeed. If we process this non-linearly using a single parameter acoustic imaging theory
the reflectors will be moved, since within such a theory an event can only have arisen due to a deviation of wavespeed
away from reference. The move can only be away from correct and toward incorrect. This is the cost of non-linear,
model-type dependent processing with the incorrect model.
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Figure 3: Three primaries-only shot records created over the three interface model. Layer velocities are fixed
and Q values are altered.

a direct non-linear theory of processing that come about in the presence of a multi-parameter
medium. The patterns that elsewhere (e.g., Innanen et al., 2004) have been used to generate
direct coupled imaging-inversion equations for a single parameter medium are retained in this 2-
parameter model, hence the closed-forms derivable in the former are available also in the latter
for 1D media. These forms, furthermore, have led to a straightforward application of a multi-
parameter strategy for task-separated processing, in which the data are processed non-linearly in
a particular chosen parameter, and linearly in another (or others). Doing so permits, for instance,
the estimation of an unattenuated data set from only non-linear operations on an attenuated data
set, i.e., Q compensation without a determination of Q. Lastly, we still withhold the claim that
we have produced an algorithm, as we are yet putting effort into creating numerical results to be
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Figure 4: Three trace detail of synthetic data over the 2-parameter viscoacoustic medium with large Q values.

validated and analyzed, nevertheless results remain encouraging. The real question to be answered
is: can we measure the variability needed to drive this theory in field data?
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